Abstract

A novel composite cavity optical fiber laser (CCFL) sensor, based on weak feedback of the optical fiber end face, is proved theoretically and experimentally. The application of the vibration measurement based on the CCFL sensor is demonstrated to prove its feasibility.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
    [CrossRef]
  2. G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
    [CrossRef]
  3. S. W. Lovseth, J. T. Kringlebotn, E. Ronnekleiv, and K. Blotekjaer, “Fiber distributed-feedback lasers used as acoustic sensors in air,” Appl. Opt. 38, 4821–4830 (1999).
    [CrossRef]
  4. L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
    [CrossRef]
  5. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1958 (1999).
    [CrossRef]
  6. B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005).
    [CrossRef]
  7. G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39, 1579–1587(2003).
    [CrossRef]
  8. L. Ma, Y. Hu, S. Xiong, Z. Meng, and Z. Hu, “Intensity noise and relaxation oscillation of a fiber-laser sensor array integrated in a single fiber,” Opt. Lett. 35, 1795–1797 (2010).
    [CrossRef] [PubMed]
  9. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [CrossRef]
  10. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
    [CrossRef]
  11. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119(1995).
    [CrossRef]
  12. N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–851(1997).
    [CrossRef]
  13. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002).
    [CrossRef]
  14. H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phys. B 79, 325–330 (2004).
    [CrossRef]
  15. J. Zhou and M. Wang, “Effects of self-mixing interference on gain-coupled distributed-feedback lasers,” Opt. Express 13, 1848–1854 (2005).
    [CrossRef] [PubMed]
  16. J. Zhou, M. Wang, and D. Han, “Experiment observation of self-mixing interference in distributed feedback laser,” Opt. Express 14, 5301–5306 (2006).
    [CrossRef] [PubMed]
  17. J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.
  18. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Coupled-cavity erbium fiber lasers incorporating fiber grating reflectors,” Opt. Lett. 18, 2023–2025 (1993).
    [CrossRef] [PubMed]
  19. A. I. Azmi, D. Sen, and G.-D. Peng, “Sensitivity enhancement in composite cavity fiber laser hydrophone,” J. Lightwave Technol. 28, 1844–1850 (2010).
    [CrossRef]
  20. C. R. Giles and E. Desurvire, “Modeling erbium doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [CrossRef]
  21. G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large scale remotely interrogated arrays of fiber optical interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19–30 (2003).
    [CrossRef]
  22. N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fiber interferometers,” Electron. Lett. 20, 319–320 (1984).
    [CrossRef]

2010 (2)

2008 (2)

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
[CrossRef]

2006 (1)

2005 (2)

J. Zhou and M. Wang, “Effects of self-mixing interference on gain-coupled distributed-feedback lasers,” Opt. Express 13, 1848–1854 (2005).
[CrossRef] [PubMed]

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005).
[CrossRef]

2004 (1)

H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phys. B 79, 325–330 (2004).
[CrossRef]

2003 (2)

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large scale remotely interrogated arrays of fiber optical interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19–30 (2003).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39, 1579–1587(2003).
[CrossRef]

2002 (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002).
[CrossRef]

1999 (2)

1997 (2)

J.-L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[CrossRef]

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–851(1997).
[CrossRef]

1995 (1)

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119(1995).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

1993 (1)

1991 (1)

C. R. Giles and E. Desurvire, “Modeling erbium doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

1984 (1)

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fiber interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Archambault, J.-L.

J.-L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[CrossRef]

Azmi, A. I.

Blotekjaer, K.

Bosch, T.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002).
[CrossRef]

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–851(1997).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Chai, Q.

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

Chan, H. L. W.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005).
[CrossRef]

Chernikov, S. V.

Cranch, G. A.

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39, 1579–1587(2003).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large scale remotely interrogated arrays of fiber optical interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19–30 (2003).
[CrossRef]

Dandridge, A.

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fiber interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Donati, S.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119(1995).
[CrossRef]

Dong, X.

L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
[CrossRef]

Englund, M. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39, 1579–1587(2003).
[CrossRef]

Flockhart, G.

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

Frigo, N. J.

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fiber interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Giuliani, G.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119(1995).
[CrossRef]

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Grubb, S. G.

J.-L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[CrossRef]

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005).
[CrossRef]

Hadeler, O.

Han, D.

Hao, Q.

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

He, S. L.

L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
[CrossRef]

Hu, Y.

Hu, Z.

Huan, H.

H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phys. B 79, 325–330 (2004).
[CrossRef]

Ibsen, M.

Kashyap, R.

Kirkendall, C. K.

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large scale remotely interrogated arrays of fiber optical interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19–30 (2003).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39, 1579–1587(2003).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Kringlebotn, J. T.

Laming, R. I.

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Lau, S.-T.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005).
[CrossRef]

Lescure, M.

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–851(1997).
[CrossRef]

Li, Q.

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

Li, X.

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

Lovseth, S. W.

Ma, L.

Meng, Z.

Merlo, S.

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119(1995).
[CrossRef]

Nash, P. J.

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large scale remotely interrogated arrays of fiber optical interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19–30 (2003).
[CrossRef]

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002).
[CrossRef]

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Peng, G.-D.

Ronnekleiv, E.

Rønnekleiv, E.

Sen, D.

Servagent, N.

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–851(1997).
[CrossRef]

Shao, L.-Y.

L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
[CrossRef]

Sun, W.

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

Tam, H.-Y.

L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
[CrossRef]

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005).
[CrossRef]

Taylor, J. R.

Tveten, A. B.

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fiber interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

Wang, M.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Xiong, S.

Yuan, L.

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

Zhang, A. P.

L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
[CrossRef]

Zhang, J.

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

Zhou, J.

Appl. Opt. (2)

Appl. Phys. B (1)

H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phys. B 79, 325–330 (2004).
[CrossRef]

Electron. Lett. (2)

L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008).
[CrossRef]

N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fiber interferometers,” Electron. Lett. 20, 319–320 (1984).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119(1995).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39, 1579–1587(2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005).
[CrossRef]

IEEE Sens. J. (2)

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large scale remotely interrogated arrays of fiber optical interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19–30 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–851(1997).
[CrossRef]

J. Lightwave Technol. (4)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

J.-L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[CrossRef]

C. R. Giles and E. Desurvire, “Modeling erbium doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

A. I. Azmi, D. Sen, and G.-D. Peng, “Sensitivity enhancement in composite cavity fiber laser hydrophone,” J. Lightwave Technol. 28, 1844–1850 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

CCFL sensing system.

Fig. 2
Fig. 2

CCFL characteristics.

Fig. 3
Fig. 3

Sensing results of a PZT cylinder vibration. (a) Signals detected by the CCFL with two different feedbacks, (b) FT spectrum of the CCFL with a tilted-cleaved fiber end face, (c) FT spectrum of the CCFL with the vertical-cleaved fiber end face. (d) Frequency response of the CCFL with two different feedbacks, (e) time-domain signal of the signal in (b) filtered by a bandpass filter from 12.9 to 13.1 kHz , (f) time-domain signal of the signal in (c) filtered by a bandpass filter from 12.9 to 13.1 kHz , (g) enlarged figure (e), (h) time-domain signal of the signal in (c) filtered by a bandpass filter from 25.9 to 26.1 kHz .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d d t E ( t ) e i Ω 0 t = { i ω N + 1 2 { ( σ e N 2 σ a N 1 ) · c / n eff 1 τ c } } E ( t ) e i Ω 0 t + K E ( t τ 0 ) e i ( Ω 0 ( t τ 0 ) + φ 0 )
d E ( t ) · E * ( t ) d t = { ( σ e N 2 σ a N 1 ) · c / n eff 1 τ c } · E ( t ) · E * ( t ) + K * E ( t ) · E * ( t τ 0 ) e i ( Ω 0 τ 0 + φ 0 ) + K E ( t τ 0 ) · E * ( t ) e i ( Ω 0 τ 0 + φ 0 )
0 = { ( σ e N 2 σ a N 1 ) · c / n eff 1 τ c } · I + 2 K · I · cos ( Ω 0 τ 0 φ 0 )
d N 2 ( t ) d t = R P * N 1 ( σ e N 2 σ a N 1 ) · I ( t ) h v * A eff N 2 ( t ) τ Er
0 = R P * N 1 ( σ e N 2 σ a N 1 ) · I h v * A eff N 2 ( t ) τ Er
I = C 1 + C 2 [ 1 2 K · τ c · cos ( Φ 0 ) ] ,
d ( Ω τ ) = 4 π L s n eff λ ( d n eff n eff + d L L s d λ λ ) = C 3 ,
I = C 1 + C 2 [ 1 2 K · τ c · cos ( Φ 0 + d ( Ω τ ) ) ] .
I ( t ) C 1 + C 2 { 1 + 2 K · τ c · cos [ C 3 · cos ( ω s t ) + Φ 0 ] } = C 1 + C 2 + 2 K · τ c · C 2 { J 0 ( C 3 ) + 2 k = 1 ( 1 ) k J 2 k ( C 3 ) · cos ( Φ 0 ) · cos ( 2 k ω s t ) 2 k = 0 ( 1 ) k J 2 k + 1 ( C 3 ) · sin ( Φ 0 ) · cos [ ( 2 k + 1 ) ω s t ] }

Metrics