Abstract

Broadband chaos generated in an optically injected semiconductor laser is applied for power-over-fiber transmission. By varying the injection power, period-one oscillation, period-two oscillation, and chaotic oscillation are observed in the injected slave laser, indicating a period-doubling route to chaos. Compared to the free-running output of the laser, its chaotic output has a drastically increased signal bandwidth, which leads to a 19dB increase of the stimulated Brillouin scattering threshold. Using a chaos of 5.2GHz bandwidth, a maximum optical power of 27dBm is obtained after 20km transmission over fiber, which is applicable to optically powering some advanced communication networks. The approach uses the inherent nonlinear laser dynamics, which requires no modulation electronics or microwave signal sources.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance improvement of power-over-fiber system using noise-modulated laser diode

Yongning Zhang, Mingjiang Zhang, Jianzhong Zhang, Yi Liu, Ruixia Liu, Yunting Li, and Yuncai Wang
Appl. Opt. 55(7) 1625-1629 (2016)

Phase noise characteristics of microwave signals generated by semiconductor laser dynamics

Jun-Ping Zhuang and Sze-Chun Chan
Opt. Express 23(3) 2777-2797 (2015)

Stimulated Brillouin scattering in optical fibers

Andrey Kobyakov, Michael Sauer, and Dipak Chowdhury
Adv. Opt. Photon. 2(1) 1-59 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription