Abstract

We propose a GeO2P2O5-codoped step index multimode (SIMM) fiber having a core diameter of around 50μm with numerical aperture of around 0.21–0.22. The proposed SIMM fiber shows excellent linear radiation response behavior with sensitivity of around 0.690.97dB/m/100rad at a 505nm wavelength within the dose rate range of 10100rad/h, as well as very low recovery at room temperature using a Co60 gamma radiation source. This enables its practical application in fiber optic personal dosimeters for measurement of low dose gamma radiation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1991), Vol.  1.
  2. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1992), Vol.  2.
  3. K. Chan, H. Ito, and H. Inaba, “An optical fiber based gas sensor for remote adsorption measurement of low level methane gas in the near infrared region,” J. Lightwave Technol. 2, 234–237 (1984).
    [CrossRef]
  4. C. A. Rowe-Taitt and F. S. Ligler, “Fiber optic biosensors,” in Handbook of Optical Fiber Sensing Technology, J.M.Lopez-Higuera, ed. (Wiley, 2002), pp. 687–700.
  5. A. M. Dietrich, “Measurement of pollutants: chemical species,” Water Environ. Res. 68, 391–406 (1996).
    [CrossRef]
  6. M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
    [CrossRef]
  7. B. M. Rogina and B. Vojnovic, “Application of optical fiber sensors for radiation dosimetry,” Radiation Meas. 26, 599–602 (1996).
    [CrossRef]
  8. E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).
  9. D. L. Griscom, “Nature of defects and defect generation in optical glasses,” Proc. SPIE 541, 38–59 (1985).
  10. D. L. Griscom, “The natures of point defects in amorphous silicon dioxide,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G.Pacchioni, L.Skuja, and D.Griscom, eds., NATO Science Series II: Mathematical and Physical Chemistry (Kluwer Academic, 2000), Vol.  2, pp. 117–159.
  11. R. M. Atkins and P. J. Lamaire, “Effects of elevated temperature hydrogen exposure on short wavelength optical losses and defect concentrations in germanosilicate optical fibers,” J. Appl. Phys. 72, 344–348 (1992).
    [CrossRef]
  12. H. Henschel, M. Korfer, K. Wittenburg, and F. Wulf, “Fiber optics radiation sensing systems for TESLA,” TESLA Report No. 2000-16 (2000).
  13. J. W. Berthold III, “Overview of prototype fiber optic sensors for future application in nuclear environments,” Proc. SPIE 2425, 74–83 (1994).
    [CrossRef]
  14. P. Jucker, G. Breuzé, F. Berghmans, and M. Decréton, “Radiation tolerant fiber-optic transmission and sensing for use in remote systems in nuclear power plant, dismantling and fusion applications,” in Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems (1995), pp. 151–158.
  15. F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.
  16. J. K. Partin, “Radiation response of optical fibers in a nuclear reactor,” Proc. SPIE 506, 46–49 (1984).
  17. J. A. Wall, T. J. Loretz, and J. E. Mattison, “Optical fiber composition and radiation hardness,” Proc. SPIE 296, 35–39(1981).
  18. R. H. West, “Choosing a fibre optic for use in a nuclear radiation environment,” Proc. SPIE 404, 9–16 (1984).
  19. P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999).
    [CrossRef]
  20. P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999).
    [CrossRef]
  21. P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000).
    [CrossRef]
  22. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
    [CrossRef]
  23. M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
    [CrossRef]
  24. S. R. Nagel, J. B. Macchesney, and K. L. Walker, “Review on MCVD process chemistry,” in Optical Fiber Communications, T.Li, ed. (Academic, 1985), Vol.  1, pp. 1–60.
  25. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
    [CrossRef]
  26. G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001).
    [CrossRef]
  27. M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
    [CrossRef]
  28. M. Nofz, R. Stosser, and F. G. Wihsmann, “ESR as a tool to study short range order phenomena in aluminosilicate glasses,” J. Non-Cryst. Solids 129, 249–258 (1991).
    [CrossRef]
  29. E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71, 133–144(1985).
    [CrossRef]
  30. G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
    [CrossRef]

2009

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

2007

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

2006

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[CrossRef]

2001

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001).
[CrossRef]

2000

P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000).
[CrossRef]

1999

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999).
[CrossRef]

1996

B. M. Rogina and B. Vojnovic, “Application of optical fiber sensors for radiation dosimetry,” Radiation Meas. 26, 599–602 (1996).
[CrossRef]

A. M. Dietrich, “Measurement of pollutants: chemical species,” Water Environ. Res. 68, 391–406 (1996).
[CrossRef]

1994

J. W. Berthold III, “Overview of prototype fiber optic sensors for future application in nuclear environments,” Proc. SPIE 2425, 74–83 (1994).
[CrossRef]

1993

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

1992

R. M. Atkins and P. J. Lamaire, “Effects of elevated temperature hydrogen exposure on short wavelength optical losses and defect concentrations in germanosilicate optical fibers,” J. Appl. Phys. 72, 344–348 (1992).
[CrossRef]

1991

M. Nofz, R. Stosser, and F. G. Wihsmann, “ESR as a tool to study short range order phenomena in aluminosilicate glasses,” J. Non-Cryst. Solids 129, 249–258 (1991).
[CrossRef]

1985

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71, 133–144(1985).
[CrossRef]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

D. L. Griscom, “Nature of defects and defect generation in optical glasses,” Proc. SPIE 541, 38–59 (1985).

1984

J. K. Partin, “Radiation response of optical fibers in a nuclear reactor,” Proc. SPIE 506, 46–49 (1984).

K. Chan, H. Ito, and H. Inaba, “An optical fiber based gas sensor for remote adsorption measurement of low level methane gas in the near infrared region,” J. Lightwave Technol. 2, 234–237 (1984).
[CrossRef]

R. H. West, “Choosing a fibre optic for use in a nuclear radiation environment,” Proc. SPIE 404, 9–16 (1984).

1983

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

1981

J. A. Wall, T. J. Loretz, and J. E. Mattison, “Optical fiber composition and radiation hardness,” Proc. SPIE 296, 35–39(1981).

Achten, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

Askins, C. G.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

Askins, G. R.

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

Atkins, R. M.

R. M. Atkins and P. J. Lamaire, “Effects of elevated temperature hydrogen exposure on short wavelength optical losses and defect concentrations in germanosilicate optical fibers,” J. Appl. Phys. 72, 344–348 (1992).
[CrossRef]

Bandyopadhyay, T. K.

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Bao, X.

P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999).
[CrossRef]

Berghmans, F.

P. Jucker, G. Breuzé, F. Berghmans, and M. Decréton, “Radiation tolerant fiber-optic transmission and sensing for use in remote systems in nuclear power plant, dismantling and fusion applications,” in Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems (1995), pp. 151–158.

F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.

Berthold, J. W.

J. W. Berthold III, “Overview of prototype fiber optic sensors for future application in nuclear environments,” Proc. SPIE 2425, 74–83 (1994).
[CrossRef]

Bhadra, S. K.

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Bhatnagar, P. K.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Bhora, D.

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Bohra, D.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

Bonera, E.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[CrossRef]

Breuzé, G.

P. Jucker, G. Breuzé, F. Berghmans, and M. Decréton, “Radiation tolerant fiber-optic transmission and sensing for use in remote systems in nuclear power plant, dismantling and fusion applications,” in Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems (1995), pp. 151–158.

Brown, K.

P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999).
[CrossRef]

Chan, K.

K. Chan, H. Ito, and H. Inaba, “An optical fiber based gas sensor for remote adsorption measurement of low level methane gas in the near infrared region,” J. Lightwave Technol. 2, 234–237 (1984).
[CrossRef]

Coenen, S.

F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.

Dasgupta, K.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Decréton, M.

F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.

P. Jucker, G. Breuzé, F. Berghmans, and M. Decréton, “Radiation tolerant fiber-optic transmission and sensing for use in remote systems in nuclear power plant, dismantling and fusion applications,” in Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems (1995), pp. 151–158.

Deparis, O.

F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.

Dhar, A.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

Dietrich, A. M.

A. M. Dietrich, “Measurement of pollutants: chemical species,” Water Environ. Res. 68, 391–406 (1996).
[CrossRef]

Erbetta, D.

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001).
[CrossRef]

Fanciulli, M.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[CrossRef]

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001).
[CrossRef]

Flammer, I.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

Friebele, E. J.

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71, 133–144(1985).
[CrossRef]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

Gingerich, M. E.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

Girard, S.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

Giri, P. P.

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Gooijer, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

Griscom, D. L.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

D. L. Griscom, “Nature of defects and defect generation in optical glasses,” Proc. SPIE 541, 38–59 (1985).

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71, 133–144(1985).
[CrossRef]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

D. L. Griscom, “The natures of point defects in amorphous silicon dioxide,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G.Pacchioni, L.Skuja, and D.Griscom, eds., NATO Science Series II: Mathematical and Physical Chemistry (Kluwer Academic, 2000), Vol.  2, pp. 117–159.

Henschel, H.

H. Henschel, M. Korfer, K. Wittenburg, and F. Wulf, “Fiber optics radiation sensing systems for TESLA,” TESLA Report No. 2000-16 (2000).

Inaba, H.

K. Chan, H. Ito, and H. Inaba, “An optical fiber based gas sensor for remote adsorption measurement of low level methane gas in the near infrared region,” J. Lightwave Technol. 2, 234–237 (1984).
[CrossRef]

Ito, H.

K. Chan, H. Ito, and H. Inaba, “An optical fiber based gas sensor for remote adsorption measurement of low level methane gas in the near infrared region,” J. Lightwave Technol. 2, 234–237 (1984).
[CrossRef]

Jucker, P.

P. Jucker, G. Breuzé, F. Berghmans, and M. Decréton, “Radiation tolerant fiber-optic transmission and sensing for use in remote systems in nuclear power plant, dismantling and fusion applications,” in Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems (1995), pp. 151–158.

F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.

Korfer, M.

H. Henschel, M. Korfer, K. Wittenburg, and F. Wulf, “Fiber optics radiation sensing systems for TESLA,” TESLA Report No. 2000-16 (2000).

Kulkarni, N.

P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999).
[CrossRef]

Kuyt, G.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

Lamaire, P. J.

R. M. Atkins and P. J. Lamaire, “Effects of elevated temperature hydrogen exposure on short wavelength optical losses and defect concentrations in germanosilicate optical fibers,” J. Appl. Phys. 72, 344–348 (1992).
[CrossRef]

Ligler, F. S.

C. A. Rowe-Taitt and F. S. Ligler, “Fiber optic biosensors,” in Handbook of Optical Fiber Sensing Technology, J.M.Lopez-Higuera, ed. (Wiley, 2002), pp. 687–700.

Liu, P.

P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000).
[CrossRef]

Long, K. J.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

Loretz, T. J.

J. A. Wall, T. J. Loretz, and J. E. Mattison, “Optical fiber composition and radiation hardness,” Proc. SPIE 296, 35–39(1981).

Lu, P.

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999).
[CrossRef]

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999).
[CrossRef]

Macchesney, J. B.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “Review on MCVD process chemistry,” in Optical Fiber Communications, T.Li, ed. (Academic, 1985), Vol.  1, pp. 1–60.

Marrone, M. J.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71, 133–144(1985).
[CrossRef]

Mattison, J. E.

J. A. Wall, T. J. Loretz, and J. E. Mattison, “Optical fiber composition and radiation hardness,” Proc. SPIE 296, 35–39(1981).

McKenzie, D. R.

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

Nagel, S. R.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “Review on MCVD process chemistry,” in Optical Fiber Communications, T.Li, ed. (Academic, 1985), Vol.  1, pp. 1–60.

Nofz, M.

M. Nofz, R. Stosser, and F. G. Wihsmann, “ESR as a tool to study short range order phenomena in aluminosilicate glasses,” J. Non-Cryst. Solids 129, 249–258 (1991).
[CrossRef]

Nokhrin, S.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[CrossRef]

Pacchioni, G.

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[CrossRef]

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001).
[CrossRef]

Pal, M.

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Pal, M. C.

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Partin, J. K.

J. K. Partin, “Radiation response of optical fibers in a nuclear reactor,” Proc. SPIE 506, 46–49 (1984).

Paul, M. C.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

Poole, S. B.

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

Regnier, E.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

Ricci, D.

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001).
[CrossRef]

Rogina, B. M.

B. M. Rogina and B. Vojnovic, “Application of optical fiber sensors for radiation dosimetry,” Radiation Meas. 26, 599–602 (1996).
[CrossRef]

Rowe-Taitt, C. A.

C. A. Rowe-Taitt and F. S. Ligler, “Fiber optic biosensors,” in Handbook of Optical Fiber Sensing Technology, J.M.Lopez-Higuera, ed. (Wiley, 2002), pp. 687–700.

Sceats, M. G.

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

Sen, R.

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Simmons, H. W.

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

Stosser, R.

M. Nofz, R. Stosser, and F. G. Wihsmann, “ESR as a tool to study short range order phenomena in aluminosilicate glasses,” J. Non-Cryst. Solids 129, 249–258 (1991).
[CrossRef]

Vojnovic, B.

B. M. Rogina and B. Vojnovic, “Application of optical fiber sensors for radiation dosimetry,” Radiation Meas. 26, 599–602 (1996).
[CrossRef]

Walker, K. L.

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “Review on MCVD process chemistry,” in Optical Fiber Communications, T.Li, ed. (Academic, 1985), Vol.  1, pp. 1–60.

Wall, J. A.

J. A. Wall, T. J. Loretz, and J. E. Mattison, “Optical fiber composition and radiation hardness,” Proc. SPIE 296, 35–39(1981).

Wang, Z. H.

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

West, R. H.

R. H. West, “Choosing a fibre optic for use in a nuclear radiation environment,” Proc. SPIE 404, 9–16 (1984).

Wihsmann, F. G.

M. Nofz, R. Stosser, and F. G. Wihsmann, “ESR as a tool to study short range order phenomena in aluminosilicate glasses,” J. Non-Cryst. Solids 129, 249–258 (1991).
[CrossRef]

Wittenburg, K.

H. Henschel, M. Korfer, K. Wittenburg, and F. Wulf, “Fiber optics radiation sensing systems for TESLA,” TESLA Report No. 2000-16 (2000).

Wolfbeis, O. S.

O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1991), Vol.  1.

O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1992), Vol.  2.

Wulf, F.

H. Henschel, M. Korfer, K. Wittenburg, and F. Wulf, “Fiber optics radiation sensing systems for TESLA,” TESLA Report No. 2000-16 (2000).

Can. J. Phys.

P. Liu, X. Bao, K. Brown, and N. Kulkarni, “Gamma-induced attenuation in normal single- and multi-mode, Ge-doped and P-doped optical fibers: a fiber optic dosimeter for low dose levels,” Can. J. Phys. 78, 89–97 (2000).
[CrossRef]

IEEE Trans. Nucl. Sci.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54, 1115–1119(2007).
[CrossRef]

J. Appl. Phys.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorous-doped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

R. M. Atkins and P. J. Lamaire, “Effects of elevated temperature hydrogen exposure on short wavelength optical losses and defect concentrations in germanosilicate optical fibers,” J. Appl. Phys. 72, 344–348 (1992).
[CrossRef]

J. Lightwave Technol.

K. Chan, H. Ito, and H. Inaba, “An optical fiber based gas sensor for remote adsorption measurement of low level methane gas in the near infrared region,” J. Lightwave Technol. 2, 234–237 (1984).
[CrossRef]

G. R. Askins, Z. H. Wang, D. R. McKenzie, M. G. Sceats, S. B. Poole, and H. W. Simmons, “Control of defects in optical fibers—a study using cathodoluminescence spectroscopy,” J. Lightwave Technol. 11, 1793–1801 (1993).
[CrossRef]

J. Non-Cryst. Solids

M. Nofz, R. Stosser, and F. G. Wihsmann, “ESR as a tool to study short range order phenomena in aluminosilicate glasses,” J. Non-Cryst. Solids 129, 249–258 (1991).
[CrossRef]

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71, 133–144(1985).
[CrossRef]

M. C. Paul, D. Bohra, A. Dhar, R. Sen, P. K. Bhatnagar, and K. Dasgupta, “Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation,” J. Non-Cryst. Solids 355, 1496–1507(2009).
[CrossRef]

J. Phys. Chem. B

G. Pacchioni, D. Erbetta, D. Ricci, and M. Fanciulli, “Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2,” J. Phys. Chem. B 105, 6097–6102 (2001).
[CrossRef]

Opt. Mater.

M. C. Pal, R. Sen, S. K. Bhadra, M. Pal, P. P. Giri, K. Dasgupta, T. K. Bandyopadhyay, D. Bhora, and P. K. Bhatnagar, “Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels,” Opt. Mater. 29, 738–745 (2007).
[CrossRef]

Phys. Rev. B

M. Fanciulli, E. Bonera, S. Nokhrin, and G. Pacchioni, “Phosphorous–oxygen hole centers in phosphosilicate glass films,” Phys. Rev. B 74, 134102 (2006).
[CrossRef]

Proc. SPIE

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, and D. L. Griscom, “Overview of radiation effects in fiber optics,” Proc. SPIE 541, 70–80 (1985).

D. L. Griscom, “Nature of defects and defect generation in optical glasses,” Proc. SPIE 541, 38–59 (1985).

J. W. Berthold III, “Overview of prototype fiber optic sensors for future application in nuclear environments,” Proc. SPIE 2425, 74–83 (1994).
[CrossRef]

J. K. Partin, “Radiation response of optical fibers in a nuclear reactor,” Proc. SPIE 506, 46–49 (1984).

J. A. Wall, T. J. Loretz, and J. E. Mattison, “Optical fiber composition and radiation hardness,” Proc. SPIE 296, 35–39(1981).

R. H. West, “Choosing a fibre optic for use in a nuclear radiation environment,” Proc. SPIE 404, 9–16 (1984).

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Experimental study of optical fibers for the application of fiber radiation sensor,” Proc. SPIE 3534, 510–518 (1999).
[CrossRef]

Radiation Meas.

P. Lu, X. Bao, N. Kulkarni, and K. Brown, “Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels,” Radiation Meas. 30, 725–733 (1999).
[CrossRef]

B. M. Rogina and B. Vojnovic, “Application of optical fiber sensors for radiation dosimetry,” Radiation Meas. 26, 599–602 (1996).
[CrossRef]

Water Environ. Res.

A. M. Dietrich, “Measurement of pollutants: chemical species,” Water Environ. Res. 68, 391–406 (1996).
[CrossRef]

Other

S. R. Nagel, J. B. Macchesney, and K. L. Walker, “Review on MCVD process chemistry,” in Optical Fiber Communications, T.Li, ed. (Academic, 1985), Vol.  1, pp. 1–60.

D. L. Griscom, “The natures of point defects in amorphous silicon dioxide,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G.Pacchioni, L.Skuja, and D.Griscom, eds., NATO Science Series II: Mathematical and Physical Chemistry (Kluwer Academic, 2000), Vol.  2, pp. 117–159.

C. A. Rowe-Taitt and F. S. Ligler, “Fiber optic biosensors,” in Handbook of Optical Fiber Sensing Technology, J.M.Lopez-Higuera, ed. (Wiley, 2002), pp. 687–700.

O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1991), Vol.  1.

O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, 1992), Vol.  2.

P. Jucker, G. Breuzé, F. Berghmans, and M. Decréton, “Radiation tolerant fiber-optic transmission and sensing for use in remote systems in nuclear power plant, dismantling and fusion applications,” in Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems (1995), pp. 151–158.

F. Berghmans, O. Deparis, S. Coenen, M. Decréton, and P. Jucker, “Optical fibres in nuclear radiation environments: potential applications—radiation effects—need for standards,” in Trends in Optical Fibre Metrology and Standards, O.D. D.Soares, ed., NATO ASI Series E: Applied Sciences (Kluwer Academic, 1995), Vol.  285, pp. 131–156.

H. Henschel, M. Korfer, K. Wittenburg, and F. Wulf, “Fiber optics radiation sensing systems for TESLA,” TESLA Report No. 2000-16 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Refractive index profile of high P 2 O 5 -doped SIMM preform (NM-182).

Fig. 2
Fig. 2

SEM image of (a) high P 2 O 5 -doped NM-182 preform sample and (b) cross-section image of the same fiber.

Fig. 3
Fig. 3

Distribution of dopants of (a) high P 2 O 5 -doped (NM-182) and (b) high P 2 O 5 with GeO 2 codoped (PS-283) preforms.

Fig. 4
Fig. 4

Radiation-induced loss of different P-doped SIMM fibers (NM-182 and PS-283) after 1 h radiation at the dose rate of 100 rad / h (total dose 100 rad ).

Fig. 5
Fig. 5

Radiation response behavior of A, GeO 2 P 2 O 5 - (NM-182); B, P 2 O 5 - (PS-283); and C, GeO 2 -doped (PS-234) fibers.

Fig. 6
Fig. 6

Wavelength dependence of the radiation- induced loss of high P 2 O 5 doped with GeO 2 SIMM fiber (NM-182) against a dose rate of 100 rad / hr .

Fig. 7
Fig. 7

Radiation sensitivity of high P 2 O 5 doped (NM-182) and high P 2 O 5 with GeO 2 -codoped fiber (PS-283) at 560 nm .

Fig. 8
Fig. 8

Radiation sensitivity of GeO 2 P 2 O 5 - codoped SIMM fiber (NM-182) at different wavelengths.

Fig. 9
Fig. 9

Recovery nature of GeO 2 P 2 O 5 -codoped SIMM fiber (NM-182) containing 16 mol % P 2 O 5 and 6 mol % GeO 2 at a 505 nm transmission wavelength with different dose rates.

Tables (1)

Tables Icon

Table 1 Different Parameters of the Tested Fibers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P O ---------- h v P O + e -------- P O , Si Ge --------- h v Si + GeE -------- Si Ge

Metrics