Abstract

We report the use of a common path phase sensitive spectral domain optical coherence tomography setup for the measurement of the refractive index (RI) of a biomimetic material (glucose solution in water having intralipid as the scattering medium) and a single biological cell (keratinocyte). The RI of glucose solutions could be measured with a precision of 0.00015, which corresponds to a precision of 2nm in the optical path length measurement in our setup. The precision obtained in the measurement of the RI of a single keratinocyte cell was 0.0004.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003).
    [CrossRef] [PubMed]
  2. A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
    [CrossRef] [PubMed]
  3. A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Zeitschrift fu¨r Medizinische Physik 20, 251–276 (2010).
    [CrossRef]
  4. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
    [CrossRef]
  5. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett. 32, 385–387 (2007).
    [CrossRef] [PubMed]
  6. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
    [CrossRef] [PubMed]
  7. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34, 1750–1752 (2009).
    [CrossRef] [PubMed]
  8. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–2133 (2005).
    [CrossRef] [PubMed]
  9. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
    [CrossRef] [PubMed]
  10. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “2π ambiguity-free optical distance measurement with subnanometer precision with a novel phase-crossing low coherence interferometer,” Opt. Lett. 27, 77–79 (2002).
    [CrossRef]
  11. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34, 3442–3444 (2009).
    [CrossRef] [PubMed]
  12. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  13. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigation of fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [CrossRef] [PubMed]
  14. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160(1982).
    [CrossRef]
  15. S. W. Kim and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954–5960 (2006).
    [CrossRef] [PubMed]
  16. S. K. Debnath, M. P. Kothiyal, and S. W. Kim, “Evaluation of the spectral phase in spectrally resolved white-light interfrometry: Comparative study of single frame techniques,” Opt. Lasers Eng. 47, 1125–1130 (2009).
    [CrossRef]
  17. J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Opt. 48, 2461–2467 (2009).
    [CrossRef] [PubMed]
  18. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994(2001).
    [CrossRef]
  19. K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations,” Appl. Opt. 43, 3408–3414 (2004).
    [CrossRef] [PubMed]
  20. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
    [CrossRef] [PubMed]
  21. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]

2010

A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Zeitschrift fu¨r Medizinische Physik 20, 251–276 (2010).
[CrossRef]

2009

2007

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
[CrossRef]

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett. 32, 385–387 (2007).
[CrossRef] [PubMed]

2006

2005

2004

2003

2002

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “2π ambiguity-free optical distance measurement with subnanometer precision with a novel phase-crossing low coherence interferometer,” Opt. Lett. 27, 77–79 (2002).
[CrossRef]

2001

1999

1982

Adie, S. G.

Akkin, T.

Armstrong, J. J.

Baumann, B.

Boppart, S. A.

Cense, B.

Chen, Z.

Choi, E. S.

Choi, H. Y.

Choma, M. A.

Creazzo, T. L.

Cuche, E.

Dasari, R. R.

de Boer, J. F.

Debnath, S. K.

S. K. Debnath, M. P. Kothiyal, and S. W. Kim, “Evaluation of the spectral phase in spectrally resolved white-light interfrometry: Comparative study of single frame techniques,” Opt. Lasers Eng. 47, 1125–1130 (2009).
[CrossRef]

Depeursinge, C.

Dubois, F.

Ellerbee, A. K.

Emery, Y.

Esenaliev, R. O.

Feld, M. S.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Zeitschrift fu¨r Medizinische Physik 20, 251–276 (2010).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003).
[CrossRef] [PubMed]

Götzinger, E.

Gupta, P. K.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
[CrossRef]

Hitzenberger, C. K.

Ikeda, T.

Ina, H.

Izatt, J. A.

Joannes, L.

Joo, C.

Kim, S. W.

Kobayashi, S.

Kothiyal, M. P.

S. K. Debnath, M. P. Kothiyal, and S. W. Kim, “Evaluation of the spectral phase in spectrally resolved white-light interfrometry: Comparative study of single frame techniques,” Opt. Lasers Eng. 47, 1125–1130 (2009).
[CrossRef]

Larin, K. V.

Larina, I. V.

Lee, B. H.

Lee, C.

Legros, J. C.

Leigh, M. S.

Leitgeb, R.

Magistretti, P.

Marquet, P.

Milner, T. E.

Motamedi, M.

Na, J.

Nguyen, F. T.

Paduch, A.

Park, B. H.

Patel, H. S.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
[CrossRef]

Pircher, M.

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
[CrossRef] [PubMed]

Popescu, G.

Rao, B.

Rao, K. D.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
[CrossRef]

Rappaz, B.

Sampson, D. D.

Sattmann, H.

Suresh, M. K.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
[CrossRef]

Takeda, M.

Tian, J.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Verma, Y.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
[CrossRef]

Wang, X.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Wax, A.

Xue, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Yang, C.

Yu, L.

Zhang, C.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Zhang, J.

Zhang, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Zysk, A. M.

Appl. Opt.

Appl. Phys. B

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007).
[CrossRef]

Br. J. Radiol.

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Nat. Biotechnol.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lasers Eng.

S. K. Debnath, M. P. Kothiyal, and S. W. Kim, “Evaluation of the spectral phase in spectrally resolved white-light interfrometry: Comparative study of single frame techniques,” Opt. Lasers Eng. 47, 1125–1130 (2009).
[CrossRef]

Opt. Lett.

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994(2001).
[CrossRef]

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “2π ambiguity-free optical distance measurement with subnanometer precision with a novel phase-crossing low coherence interferometer,” Opt. Lett. 27, 77–79 (2002).
[CrossRef]

A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett. 32, 385–387 (2007).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigation of fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–2133 (2005).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34, 1750–1752 (2009).
[CrossRef] [PubMed]

J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34, 3442–3444 (2009).
[CrossRef] [PubMed]

Zeitschrift fu¨r Medizinische Physik

A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Zeitschrift fu¨r Medizinische Physik 20, 251–276 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the common path spectral domain interferometer. SLD, FC, C, L, TG, and LSC are the abbreviations for superluminescent diode, fiber-optic coupler, collimating lens, lens, transmission grating, and line scan camera, respectively. Inset picture shows the sample chamber along with the paths of interfering (reference and sample) beams.

Fig. 2
Fig. 2

(a) The spectral interference fringes are shown for empty (solid line) and water filled (dash-dot line) sample chambers, (b) the unwrapped phase and wavenumber curve shows change in slope for the empty (black line) and water filled sample chamber (dash-dot line). Inset picture shows the stability of the OPL calculated over 100 measurements for a coverslip of thickness 115 μm .

Fig. 3
Fig. 3

Fluctuations in measurements of OPL using (a) separate reference and sample arms and (b) with common path inter ferometer.

Fig. 4
Fig. 4

FFT of the acquired spectrum before (solid line) and after (dotted line) removal of coverslip from the sample chamber. The peak marked by letter A corresponds to the OPL of the coverslip while B and B are the peaks corresponding to the thickness of the sample chamber before and after removing the coverslip respectively.

Fig. 5
Fig. 5

The RI data obtained for different concentrations are shown for (a) water (b) 0.5% intralipid (square), and 1% intralipid (diamond). The linear fit to data obtained in water is shown in solid line and that of 0.5% intralipid and 1% intralipid are shown in dotted and dashed lines respectively.

Fig. 6
Fig. 6

(a) The schematic diagram of single cell RI measurement setup. (b) The measured change in OPL when light passes through the cell and outside the cell.

Tables (1)

Tables Icon

Table 1 Linear Fitting Parameters for Glucose Sensing in Water and in Intralipid Solutions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z = 1 2 k [ Φ 2 π int ( Φ 2 k z 2 π ) ] .
n c = n s + ( L c L s ) CS ,

Metrics