Abstract

In this paper, we give an overview of recent results on switching of light in fibers with internal electrodes. Polarization rotation, nanosecond gating, and wavelength switching in fiber Bragg gratings and in long period gratings are discussed. Applications are exemplified in Q-switching fiber lasers and in RF-signal filtering.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
    [CrossRef] [PubMed]
  2. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
    [CrossRef]
  3. K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
    [CrossRef]
  4. A. D. Ellis and D. A. Cleland, “Ultrafast all optical switching in 2 wavelength amplifying nonlinear optical loop mirror,” Electron. Lett. 28, 405–406 (1992).
    [CrossRef]
  5. M. Asobe, H. Itoh, and K. Kubodera, “Ultrafast all-optical switching in a walk-off-suppressed nonlinear fiber loop mirror switch,” Opt. Commun. 88, 446–450 (1992).
    [CrossRef]
  6. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
    [CrossRef]
  7. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
    [CrossRef]
  8. D. Marchese, M. De Sario, A. Jha, A. K. Kar, and E. C. Smith, “Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching,” J. Opt. Soc. Am. B 15, 2361–2370 (1998).
    [CrossRef]
  9. M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass-fiber,” Opt. Lett. 18, 1056–1058(1993).
    [CrossRef] [PubMed]
  10. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
    [CrossRef]
  11. I. V. Kabakova, T. Walsh, C. M. de Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1351 (2010).
    [CrossRef]
  12. I. V. Kabakova, D. Grobnic, S. Mihailov, E. C. Mägi, C. M. de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19, 5868–5873 (2011).
    [CrossRef] [PubMed]
  13. L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
    [CrossRef]
  14. J. Jarzynski, “Frequency response of a single-mode optical fiber phase modulator utilizing a piezoelectric plastic jacket,” J. Appl. Phys. 55, 3243–3250 (1984).
    [CrossRef]
  15. M. Leigh, W. Shi, J. Zong, J. F. Wang, S. B. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 μm,” Opt. Lett. 32, 897–899 (2007).
    [CrossRef] [PubMed]
  16. I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
    [CrossRef]
  17. Proximion, “White Paper on Wistom,” http://www.proximion.com/sites/default/files/technology/100499-C-MAN-WISTOM_White_Paper_-_Optical_Layer_Monitoring_web.pdf.
  18. M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
    [CrossRef]
  19. A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
    [CrossRef]
  20. K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996).
    [CrossRef]
  21. N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996).
    [CrossRef]
  22. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476–1478 (1997).
    [CrossRef]
  23. L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
    [CrossRef]
  24. L. Li, R. D. Birch, and D. N. Payne, “An all fibre electro-optic Kerr modulator,” in IEE Colloquium on Advanced Fibre Waveguide Devices (IEE, 1986), 253–256.
  25. P. G. Kazansky, P. S. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484–1493(1997).
    [CrossRef]
  26. W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).
  27. S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116, 1007–1023 (2008).
    [CrossRef]
  28. R. Kashyap, “Poling of glasses and optical fibers,” in Handbook of Fiber Bragg Gratings, 2nd ed. (Academic, 2010), pp. 527–596.
    [CrossRef]
  29. J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
    [CrossRef]
  30. H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32, 614–616 (2007).
    [CrossRef] [PubMed]
  31. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15, 14948–14953 (2007).
    [CrossRef] [PubMed]
  32. Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, “Physics of electrically switched fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CMK1.
    [PubMed]
  33. Z. Yu, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express 16, 8229–8235 (2008).
    [CrossRef] [PubMed]
  34. Z. Yu, W. Margulis, and P.-Y. Fonjallaz, “High speed switching,” in Handbook of Manipulating Light with Fibre Bragg Gratings: Nanosecond Switching Using In-Fibre Electrodes and Ultra-Narrow Filtering of Millimetre-wave Signals, (VDM, 2008), pp. 39–76.
    [PubMed]
  35. Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34, 1024–1026 (2009).
    [CrossRef] [PubMed]
  36. H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986).
    [CrossRef] [PubMed]
  37. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
    [CrossRef] [PubMed]
  38. A. Iocco, H. G. Limberger, and R. P. Salathe, “Bragg grating fast tunable filter,” Electron. Lett. 33, 2147–2148 (1997).
    [CrossRef]
  39. A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
    [CrossRef]
  40. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010).
  41. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
    [CrossRef]
  42. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
    [CrossRef]
  43. Z. Yu, M. Malmström, C. Sterner, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Dynamics of long-period gratings tuned with internal fiber electrodes,” Opt. Lett. 36, 633–635(2011).
    [CrossRef] [PubMed]
  44. S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
    [CrossRef] [PubMed]
  45. G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Analysis and optimization of an all-fiber device based on photonic crystal fiber with integrated electrodes,” Opt. Express 18, 2842–2848 (2010).
    [CrossRef] [PubMed]
  46. N. F. Borrelli and R. A. Miller, “Determination of the individual strain–optic coefficients of glass by an ultrasonic technique,” Appl. Opt. 7, 745–750 (1968).
    [CrossRef] [PubMed]
  47. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
    [CrossRef]
  48. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  49. T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
    [CrossRef]
  50. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
    [CrossRef] [PubMed]
  51. M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “Single-frequency active Q-switched distributed fiber laser using acoustic waves,” Appl. Phys. Lett. 90, 171110 (2007).
    [CrossRef]
  52. Z. W. Yu, M. Malmstrom, O. Tarasenko, W. Margulis, and F. Laurell, “Actively Q-switched all-fiber laser with an electrically controlled microstructured fiber,” Opt. Express 18, 11052–11057.
    [CrossRef] [PubMed]
  53. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009).
    [CrossRef] [PubMed]
  54. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796(2009).
    [CrossRef] [PubMed]

2011

2010

2009

2008

2007

2006

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[CrossRef] [PubMed]

2005

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

2003

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

2000

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

1999

1998

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

D. Marchese, M. De Sario, A. Jha, A. K. Kar, and E. C. Smith, “Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching,” J. Opt. Soc. Am. B 15, 2361–2370 (1998).
[CrossRef]

1997

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

P. G. Kazansky, P. S. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484–1493(1997).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476–1478 (1997).
[CrossRef]

A. Iocco, H. G. Limberger, and R. P. Salathe, “Bragg grating fast tunable filter,” Electron. Lett. 33, 2147–2148 (1997).
[CrossRef]

1996

A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
[CrossRef]

K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

1994

M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
[CrossRef]

1993

1992

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[CrossRef]

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
[CrossRef]

A. D. Ellis and D. A. Cleland, “Ultrafast all optical switching in 2 wavelength amplifying nonlinear optical loop mirror,” Electron. Lett. 28, 405–406 (1992).
[CrossRef]

M. Asobe, H. Itoh, and K. Kubodera, “Ultrafast all-optical switching in a walk-off-suppressed nonlinear fiber loop mirror switch,” Opt. Commun. 88, 446–450 (1992).
[CrossRef]

1991

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

1989

1986

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[CrossRef]

H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986).
[CrossRef] [PubMed]

1984

J. Jarzynski, “Frequency response of a single-mode optical fiber phase modulator utilizing a piezoelectric plastic jacket,” J. Appl. Phys. 55, 3243–3250 (1984).
[CrossRef]

1982

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
[CrossRef]

1968

Abreu-Afonso, J.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

Agger, S.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

An, H.

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116, 1007–1023 (2008).
[CrossRef]

Andersen, T. V.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

Andres, M.

Andres, M. V.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “Single-frequency active Q-switched distributed fiber laser using acoustic waves,” Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

Andrés, M. V.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass-fiber,” Opt. Lett. 18, 1056–1058(1993).
[CrossRef] [PubMed]

M. Asobe, H. Itoh, and K. Kubodera, “Ultrafast all-optical switching in a walk-off-suppressed nonlinear fiber loop mirror switch,” Opt. Commun. 88, 446–450 (1992).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[CrossRef]

Belmonte, M.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Bennion, I.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Birch, R. D.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[CrossRef]

L. Li, R. D. Birch, and D. N. Payne, “An all fibre electro-optic Kerr modulator,” in IEE Colloquium on Advanced Fibre Waveguide Devices (IEE, 1986), 253–256.

Blow, K. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
[CrossRef] [PubMed]

Borrelli, N. F.

Butler, S. A.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Capmany, J.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Carvalho, I. C. S.

Chesini, G.

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Chisholm, K. E.

Clarkson, W. A.

Cleland, D. A.

A. D. Ellis and D. A. Cleland, “Ultrafast all optical switching in 2 wavelength amplifying nonlinear optical loop mirror,” Electron. Lett. 28, 405–406 (1992).
[CrossRef]

Constantine, P. D.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

Cordeiro, C. M. B.

Cruz, J. L.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “Single-frequency active Q-switched distributed fiber laser using acoustic waves,” Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

Cuadrado-Laborde, C.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

Dabkiewicz, P.

de Matos, C. J. S.

De Sario, M.

de Sterke, C. M.

Delgado-Pinar, M.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “Single-frequency active Q-switched distributed fiber laser using acoustic waves,” Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[CrossRef] [PubMed]

Diez, A.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “Single-frequency active Q-switched distributed fiber laser using acoustic waves,” Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[CrossRef] [PubMed]

Díez, A.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

Donalds, L. J.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
[CrossRef]

Doran, N. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
[CrossRef] [PubMed]

Duchowicz, R.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

Dupriez, P.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Eggleton, B. J.

Ellis, A. D.

A. D. Ellis and D. A. Cleland, “Ultrafast all optical switching in 2 wavelength amplifying nonlinear optical loop mirror,” Electron. Lett. 28, 405–406 (1992).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Everall, L. A.

Fleming, S. C.

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116, 1007–1023 (2008).
[CrossRef]

Fokine, M.

Fonjallaz, P. Y.

Fonjallaz, P.-Y.

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15, 14948–14953 (2007).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, “Physics of electrically switched fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CMK1.
[PubMed]

Z. Yu, W. Margulis, and P.-Y. Fonjallaz, “High speed switching,” in Handbook of Manipulating Light with Fibre Bragg Gratings: Nanosecond Switching Using In-Fibre Electrodes and Ultra-Narrow Filtering of Millimetre-wave Signals, (VDM, 2008), pp. 39–76.
[PubMed]

Fox, G. R.

K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996).
[CrossRef]

A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
[CrossRef]

Franco, M. A. R.

French, W. G.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
[CrossRef]

Garcia, F. C.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Goh, C. S.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Grobnic, D.

Gusarov, A.

A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
[CrossRef]

Han, W.-T.

Hering, E. N.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Hickey, L. M. B.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Ibsen, M.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Imai, M.

M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
[CrossRef]

Iocco, A.

Itoh, H.

M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass-fiber,” Opt. Lett. 18, 1056–1058(1993).
[CrossRef] [PubMed]

M. Asobe, H. Itoh, and K. Kubodera, “Ultrafast all-optical switching in a walk-off-suppressed nonlinear fiber loop mirror switch,” Opt. Commun. 88, 446–450 (1992).
[CrossRef]

Jarzynski, J.

J. Jarzynski, “Frequency response of a single-mode optical fiber phase modulator utilizing a piezoelectric plastic jacket,” J. Appl. Phys. 55, 3243–3250 (1984).
[CrossRef]

Jeong, Y.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Jha, A.

Jiang, S. B.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Kabakova, I. V.

Kanamori, T.

M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass-fiber,” Opt. Lett. 18, 1056–1058(1993).
[CrossRef] [PubMed]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[CrossRef]

Kar, A. K.

Kashyap, R.

R. Kashyap, “Poling of glasses and optical fibers,” in Handbook of Fiber Bragg Gratings, 2nd ed. (Academic, 2010), pp. 527–596.
[CrossRef]

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010).

Kawanishi, S.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky, P. S. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484–1493(1997).
[CrossRef]

Keiding, S. R.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

Kikuchi, K.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Kim, B. H.

Kim, B. Y.

Kim, H. S.

Knape, H.

Knight, J. C.

Kobayashi, H.

Koch, R.

Kubodera, K.

M. Asobe, H. Itoh, and K. Kubodera, “Ultrafast all-optical switching in a walk-off-suppressed nonlinear fiber loop mirror switch,” Opt. Commun. 88, 446–450 (1992).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[CrossRef]

Kwang, I. K.

Ky, N. H.

N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996).
[CrossRef]

Laurell, F.

Lee, S. H.

Leigh, M.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Lesche, B.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Li, J.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Li, L.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[CrossRef]

L. Li, R. D. Birch, and D. N. Payne, “An all fibre electro-optic Kerr modulator,” in IEE Colloquium on Advanced Fibre Waveguide Devices (IEE, 1986), 253–256.

Limberger, H. G.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

A. Iocco, H. G. Limberger, and R. P. Salathe, “Bragg grating fast tunable filter,” Electron. Lett. 33, 2147–2148 (1997).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996).
[CrossRef]

A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
[CrossRef]

Limberger, H. P.

K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996).
[CrossRef]

Lucek, J. K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

Mägi, E. C.

Malinowski, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Malmstrom, M.

Malmström, M.

Marchese, D.

Margulis, W.

Z. Yu, M. Malmström, C. Sterner, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Dynamics of long-period gratings tuned with internal fiber electrodes,” Opt. Lett. 36, 633–635(2011).
[CrossRef] [PubMed]

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009).
[CrossRef] [PubMed]

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796(2009).
[CrossRef] [PubMed]

Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34, 1024–1026 (2009).
[CrossRef] [PubMed]

Z. Yu, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express 16, 8229–8235 (2008).
[CrossRef] [PubMed]

H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32, 614–616 (2007).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15, 14948–14953 (2007).
[CrossRef] [PubMed]

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, “Physics of electrically switched fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CMK1.
[PubMed]

Z. Yu, W. Margulis, and P.-Y. Fonjallaz, “High speed switching,” in Handbook of Manipulating Light with Fibre Bragg Gratings: Nanosecond Switching Using In-Fibre Electrodes and Ultra-Narrow Filtering of Millimetre-wave Signals, (VDM, 2008), pp. 39–76.
[PubMed]

Z. W. Yu, M. Malmstrom, O. Tarasenko, W. Margulis, and F. Laurell, “Actively Q-switched all-fiber laser with an electrically controlled microstructured fiber,” Opt. Express 18, 11052–11057.
[CrossRef] [PubMed]

Marshall, I. W.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Martínez-Gámez, M. A.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Mihailov, S.

Miller, R. A.

Mitchell, W. C.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
[CrossRef]

Mokhtar, M. R.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Morioka, T.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
[CrossRef]

Motoi, K.

M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
[CrossRef]

Myren, N.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Nayar, B. K.

Nelson, B. P.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

Nguyen Hong, K.

A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
[CrossRef]

K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996).
[CrossRef]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Odajima, A.

M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
[CrossRef]

Okamoto, K.

Ortega, B.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Pastor, D.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Payne, D. N.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[CrossRef]

L. Li, R. D. Birch, and D. N. Payne, “An all fibre electro-optic Kerr modulator,” in IEE Colloquium on Advanced Fibre Waveguide Devices (IEE, 1986), 253–256.

Perez-Millan, P.

Pérez-Millán, P.

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

Peyghambarian, N.

Piper, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Pruneri, V.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Puerto, G.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Rugeland, P.

Russell, P. S.

P. G. Kazansky, P. S. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484–1493(1997).
[CrossRef]

Sahu, J. K.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Sakaguchi, T.

M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
[CrossRef]

Salath, R. P.

K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996).
[CrossRef]

Salathe, R. P.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

A. Iocco, H. G. Limberger, and R. P. Salathe, “Bragg grating fast tunable filter,” Electron. Lett. 33, 2147–2148 (1997).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996).
[CrossRef]

A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
[CrossRef]

Saruwatari, M.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
[CrossRef]

Satoh, S.

M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
[CrossRef]

Serrão, V. A.

Set, S. Y.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

Shi, W.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Smith, E. C.

Smith, K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

Sterner, C.

Swinehart, R. M.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
[CrossRef]

Takara, H.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
[CrossRef]

Takebe, H.

P. G. Kazansky, P. S. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484–1493(1997).
[CrossRef]

Tarasenko, O.

Z. Yu, M. Malmström, C. Sterner, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Dynamics of long-period gratings tuned with internal fiber electrodes,” Opt. Lett. 36, 633–635(2011).
[CrossRef] [PubMed]

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796(2009).
[CrossRef] [PubMed]

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009).
[CrossRef] [PubMed]

Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34, 1024–1026 (2009).
[CrossRef] [PubMed]

Z. Yu, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express 16, 8229–8235 (2008).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15, 14948–14953 (2007).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, “Physics of electrically switched fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CMK1.
[PubMed]

Z. W. Yu, M. Malmstrom, O. Tarasenko, W. Margulis, and F. Laurell, “Actively Q-switched all-fiber laser with an electrically controlled microstructured fiber,” Opt. Express 18, 11052–11057.
[CrossRef] [PubMed]

Tengstrand, G.

Thomsen, B. C.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Uchiyama, K.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
[CrossRef]

Ulrich, R.

Valente, L. C. G.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Villegas, I. L.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

Walsh, T.

Wang, J. F.

Wei, T.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
[CrossRef]

Williams, J. A. R.

Wylangowski, G.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[CrossRef]

Xie, H. M.

Yu, Z.

Z. Yu, M. Malmström, C. Sterner, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Dynamics of long-period gratings tuned with internal fiber electrodes,” Opt. Lett. 36, 633–635(2011).
[CrossRef] [PubMed]

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796(2009).
[CrossRef] [PubMed]

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009).
[CrossRef] [PubMed]

Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34, 1024–1026 (2009).
[CrossRef] [PubMed]

Z. Yu, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express 16, 8229–8235 (2008).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15, 14948–14953 (2007).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, “Physics of electrically switched fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CMK1.
[PubMed]

Z. Yu, W. Margulis, and P.-Y. Fonjallaz, “High speed switching,” in Handbook of Manipulating Light with Fibre Bragg Gratings: Nanosecond Switching Using In-Fibre Electrodes and Ultra-Narrow Filtering of Millimetre-wave Signals, (VDM, 2008), pp. 39–76.
[PubMed]

Yu, Z. W.

Yun, S. H.

Zalvidea, D.

Zervas, M. N.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

Zong, J.

Appl. Opt.

Appl. Phys. Lett.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “Single-frequency active Q-switched distributed fiber laser using acoustic waves,” Appl. Phys. Lett. 90, 171110 (2007).
[CrossRef]

Electron. Lett.

A. Iocco, H. G. Limberger, and R. P. Salathe, “Bragg grating fast tunable filter,” Electron. Lett. 33, 2147–2148 (1997).
[CrossRef]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[CrossRef]

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991).
[CrossRef]

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992).
[CrossRef]

A. D. Ellis and D. A. Cleland, “Ultrafast all optical switching in 2 wavelength amplifying nonlinear optical loop mirror,” Electron. Lett. 28, 405–406 (1992).
[CrossRef]

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982).
[CrossRef]

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005).
[CrossRef]

M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994).
[CrossRef]

K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996).
[CrossRef]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992).
[CrossRef]

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006).
[CrossRef]

J. Appl. Phys.

J. Jarzynski, “Frequency response of a single-mode optical fiber phase modulator utilizing a piezoelectric plastic jacket,” J. Appl. Phys. 55, 3243–3250 (1984).
[CrossRef]

J. Ceram. Soc. Jpn.

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116, 1007–1023 (2008).
[CrossRef]

J. Lightwave Technol.

P. G. Kazansky, P. S. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484–1493(1997).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996).
[CrossRef]

A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011).
[CrossRef]

MRS Bull.

W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Opt. Commun.

M. Asobe, H. Itoh, and K. Kubodera, “Ultrafast all-optical switching in a walk-off-suppressed nonlinear fiber loop mirror switch,” Opt. Commun. 88, 446–450 (1992).
[CrossRef]

T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006).
[CrossRef]

Opt. Express

M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[CrossRef] [PubMed]

Z. W. Yu, M. Malmstrom, O. Tarasenko, W. Margulis, and F. Laurell, “Actively Q-switched all-fiber laser with an electrically controlled microstructured fiber,” Opt. Express 18, 11052–11057.
[CrossRef] [PubMed]

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009).
[CrossRef] [PubMed]

S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009).
[CrossRef] [PubMed]

G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Analysis and optimization of an all-fiber device based on photonic crystal fiber with integrated electrodes,” Opt. Express 18, 2842–2848 (2010).
[CrossRef] [PubMed]

I. V. Kabakova, D. Grobnic, S. Mihailov, E. C. Mägi, C. M. de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19, 5868–5873 (2011).
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15, 14948–14953 (2007).
[CrossRef] [PubMed]

Z. Yu, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express 16, 8229–8235 (2008).
[CrossRef] [PubMed]

G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009).
[CrossRef] [PubMed]

Opt. Fiber Technol.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

Opt. Lett.

M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass-fiber,” Opt. Lett. 18, 1056–1058(1993).
[CrossRef] [PubMed]

M. Leigh, W. Shi, J. Zong, J. F. Wang, S. B. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 μm,” Opt. Lett. 32, 897–899 (2007).
[CrossRef] [PubMed]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476–1478 (1997).
[CrossRef]

K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
[CrossRef] [PubMed]

Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34, 1024–1026 (2009).
[CrossRef] [PubMed]

H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986).
[CrossRef] [PubMed]

H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32, 614–616 (2007).
[CrossRef] [PubMed]

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796(2009).
[CrossRef] [PubMed]

Z. Yu, M. Malmström, C. Sterner, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Dynamics of long-period gratings tuned with internal fiber electrodes,” Opt. Lett. 36, 633–635(2011).
[CrossRef] [PubMed]

Other

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010).

R. Kashyap, “Poling of glasses and optical fibers,” in Handbook of Fiber Bragg Gratings, 2nd ed. (Academic, 2010), pp. 527–596.
[CrossRef]

L. Li, R. D. Birch, and D. N. Payne, “An all fibre electro-optic Kerr modulator,” in IEE Colloquium on Advanced Fibre Waveguide Devices (IEE, 1986), 253–256.

Z. Yu, W. Margulis, and P.-Y. Fonjallaz, “High speed switching,” in Handbook of Manipulating Light with Fibre Bragg Gratings: Nanosecond Switching Using In-Fibre Electrodes and Ultra-Narrow Filtering of Millimetre-wave Signals, (VDM, 2008), pp. 39–76.
[PubMed]

Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, “Physics of electrically switched fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CMK1.
[PubMed]

Proximion, “White Paper on Wistom,” http://www.proximion.com/sites/default/files/technology/100499-C-MAN-WISTOM_White_Paper_-_Optical_Layer_Monitoring_web.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Examples of microstructured fibers used in this work. The 125 μm fibers have a standard single-mode core and cutoff 1.24 μm .

Fig. 2
Fig. 2

Typical appearance of packaged electrically driven fiber switch. One subminiature version A contact is used for feeding the gating current pulse and the other one for monitoring. Alternatively, both contacts are used for high current delivery (see Section 4).

Fig. 3
Fig. 3

High voltage pulses used for heating the internal electrodes. The repetition rate of the CMOS electronic switch exceeds 50 kHz .

Fig. 4
Fig. 4

Optical response of polarization switch placed between crossed fiber polarizers.

Fig. 5
Fig. 5

Polarization switch placed between crossed fiber polarizers showing a 9 π rad rotation with an electrical pulse of 11.5 μs .

Fig. 6
Fig. 6

Gated pulse by switching the fiber on and off in nanoseconds [35].

Fig. 7
Fig. 7

Full switching off-on is accomplished with 29 ns rise time. Inset, the time evolution of signal in microseconds [31].

Fig. 8
Fig. 8

Switching a DFB FBG from high to low transmission [34].

Fig. 9
Fig. 9

(a) Birefringence leads to two Bragg peaks before switching, one for each polarization eigenstate. (b) By tuning the probe laser source at various wavelengths, it is possible to study the refractive index evolutions in time and determine the sign and amplitude of the wavelength shifts [34].

Fig. 10
Fig. 10

(a) Schematic diagram of wavelength shift observed at times t 1 to t 4 at the Bragg wavelength λ B at t = t 0 for (a) x polarized probe light and (b) y polarized probe light. Oscilloscope traces showing time evolution of grating reflection at λ B for (c) x polarization and (d) y polarization [33].

Fig. 11
Fig. 11

Heat transfer from the metal electrode and time evolution of the refractive index for the x and y polarizations simulated with COMSOL software. The calculations are shown at times t 1 to t 4 . Until t 1 , only the mechanical effect changes the refractive index. The relaxation that follows dominates until t 2 , accompanied by an increase in cladding temperature, which is the largest effect at t 3 . Finally, the heat diffuses to the core at t 4 and passes it into the cladding at t 5 [43].

Fig. 12
Fig. 12

FBG wavelength shift induced in an electrically driven device subjected to (a) constant duration ( 0.24 μs ) pulse of varying amplitude and (b) constant amplitude ( 1 kV ) and varying duration. It is concluded that the response is proportional to the duration and to the square of the current applied [32, 34].

Fig. 13
Fig. 13

Setup used for Q switching (and cavity dumping) a fiber laser [52].

Fig. 14
Fig. 14

Single laser pulse generated by a Q-switched and cavity-dumped fiber laser using a fiber switch. The inset shows the intracavity evolution of the laser pulse. Note that after the pulse is extracted, the intracavity flux dies out [52].

Fig. 15
Fig. 15

(left) Adjustable narrow linewidth DFB filter based on fiber with internal electrode. (right) Determination of unknown RF frequency from the time elapsed after the beginning of the wavelength sweep [54].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n x = n o 6.5 × 10 13 σ x 4.2 × 10 12 ( σ y + σ z ) + Δ T × d n / d T ,

Metrics