Abstract

Fiber pigtailed optical channel drop filters based on high-contrast silicon (Si)–air photonic crystals (PCs) have been designed and fabricated. A low fiber-to-fiber insertion loss of 2.2dB is achieved using lensed fiber pigtails inserted into alignment grooves fabricated along with the filter layers that have smooth vertical sidewalls obtained by the high-aspect-ratio crystallographic orientation-dependent wet anisotropic etching of (110) planar Si wafer. Four filters with varying defect widths have been fabricated to drop wavelengths in the 15201603nm range. It is shown that a 2% to 8% change in the periodicity and the associated change in the filling factor introduced in the constituent PC mirrors leads to large photonic bandgaps.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Goh, S. Y. Set, and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1306–1308 (2002).
    [CrossRef]
  2. P.-C. Peng, H.-Y. Cheng, and S. Chi, “Wavelength tunable add-drop multiplexers using fiber Fabry Perot tunable filters for bidirectional wavelength division multiplexing networks,” Opt. Eng. 43, 2422–2425 (2004).
    [CrossRef]
  3. L. H. Domash, E. Ma, N. Nemchuk, A. Payne, and M. Wu, “Tunable thin film filters,” in Optical Fiber Communication Conference, Vol. 2 of 2003 OSA Technical Digest Series (2003), pp. 522–524.
  4. J. D. Joannopolous, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals, Molding the Flow of Light,” 2nd ed. (Princeton University Press, 2007).
  5. C.M.Soukoulis, ed., “Photonic band gap materials,” in Proceedings of the NATO Advanced Study Institute on Photonic Band Gap Materials (Elounda, 1995), pp. 563–665.
  6. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry–Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32, 533–535 (2007).
    [CrossRef] [PubMed]
  7. A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).
    [CrossRef]
  8. V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
    [CrossRef]
  9. C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
    [CrossRef]
  10. E. S. Kalesar and M. W. Carver, “Deep anisotropic etching of tapered channels in (110)—oriented silicon,” Chem. Mater. 1, 634–639 (1989).
    [CrossRef]
  11. E. A. Rehman and A. Shaarawi, “Defect mode in periodic and quasiperiodic one-dimensional photonic structures,” J. Mater. Sci.: Mater. Electron. 20, S153–S158 (2009).
    [CrossRef]
  12. Z.-F. Sang and Z.-Y. Li, “Properties of defect modes in one-dimensional photonic crystals containing a graded defect layer,” Opt. Commun. 273, 162–166 (2007).
    [CrossRef]
  13. K. Busch, C. T. Chan, and C. M. Soukoulis, “Techniques for band structures and defect states in photonic crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Springer, 1996), pp. 465–485.
  14. University of Reading, “Infrared multilayer laboratory,” www.irfilters.reading.ac.uk/library/technical_data/infrared_materials/si_dispersion.htm.
  15. A. Ghatak, Optics, 3rd ed. (McGraw-Hill, 1994), pp. 14.2–14.3.
  16. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio free standing gratings in silicon on insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597(2007).
    [CrossRef]
  17. J. J. Kelly and H. G. G. Philipsen, “Anisotropy in the wet etching of semiconductors,” Curr. Opin. Solid State Mater. Sci. 9, 84–90 (2005).
    [CrossRef]
  18. A. Lipson and E. M. Yeatman, “Low-loss one-dimensional photonic band gap filter in (110) silicon,” Opt. Lett. 31, 395–397 (2006).
    [CrossRef] [PubMed]

2009 (1)

E. A. Rehman and A. Shaarawi, “Defect mode in periodic and quasiperiodic one-dimensional photonic structures,” J. Mater. Sci.: Mater. Electron. 20, S153–S158 (2009).
[CrossRef]

2007 (5)

Z.-F. Sang and Z.-Y. Li, “Properties of defect modes in one-dimensional photonic crystals containing a graded defect layer,” Opt. Commun. 273, 162–166 (2007).
[CrossRef]

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio free standing gratings in silicon on insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597(2007).
[CrossRef]

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry–Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32, 533–535 (2007).
[CrossRef] [PubMed]

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).
[CrossRef]

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

2006 (1)

2005 (1)

J. J. Kelly and H. G. G. Philipsen, “Anisotropy in the wet etching of semiconductors,” Curr. Opin. Solid State Mater. Sci. 9, 84–90 (2005).
[CrossRef]

2004 (1)

P.-C. Peng, H.-Y. Cheng, and S. Chi, “Wavelength tunable add-drop multiplexers using fiber Fabry Perot tunable filters for bidirectional wavelength division multiplexing networks,” Opt. Eng. 43, 2422–2425 (2004).
[CrossRef]

2002 (2)

C. S. Goh, S. Y. Set, and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

1989 (1)

E. S. Kalesar and M. W. Carver, “Deep anisotropic etching of tapered channels in (110)—oriented silicon,” Chem. Mater. 1, 634–639 (1989).
[CrossRef]

Ahn, M.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio free standing gratings in silicon on insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597(2007).
[CrossRef]

Astrova, E. V.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Bruder, J.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Bunk, O.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Busch, K.

K. Busch, C. T. Chan, and C. M. Soukoulis, “Techniques for band structures and defect states in photonic crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Springer, 1996), pp. 465–485.

Carver, M. W.

E. S. Kalesar and M. W. Carver, “Deep anisotropic etching of tapered channels in (110)—oriented silicon,” Chem. Mater. 1, 634–639 (1989).
[CrossRef]

Chan, C. T.

K. Busch, C. T. Chan, and C. M. Soukoulis, “Techniques for band structures and defect states in photonic crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Springer, 1996), pp. 465–485.

Cheng, H.-Y.

P.-C. Peng, H.-Y. Cheng, and S. Chi, “Wavelength tunable add-drop multiplexers using fiber Fabry Perot tunable filters for bidirectional wavelength division multiplexing networks,” Opt. Eng. 43, 2422–2425 (2004).
[CrossRef]

Chi, S.

P.-C. Peng, H.-Y. Cheng, and S. Chi, “Wavelength tunable add-drop multiplexers using fiber Fabry Perot tunable filters for bidirectional wavelength division multiplexing networks,” Opt. Eng. 43, 2422–2425 (2004).
[CrossRef]

David, C.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Diaz, A.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Domash, L. H.

L. H. Domash, E. Ma, N. Nemchuk, A. Payne, and M. Wu, “Tunable thin film filters,” in Optical Fiber Communication Conference, Vol. 2 of 2003 OSA Technical Digest Series (2003), pp. 522–524.

Ghatak, A.

A. Ghatak, Optics, 3rd ed. (McGraw-Hill, 1994), pp. 14.2–14.3.

Goh, C. S.

C. S. Goh, S. Y. Set, and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

Granitsyna, L. S.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Grunzweig, C.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Heilmann, R. K.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio free standing gratings in silicon on insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597(2007).
[CrossRef]

Joannopolous, J. D.

J. D. Joannopolous, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals, Molding the Flow of Light,” 2nd ed. (Princeton University Press, 2007).

Johnson, S. G.

J. D. Joannopolous, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals, Molding the Flow of Light,” 2nd ed. (Princeton University Press, 2007).

Kalesar, E. S.

E. S. Kalesar and M. W. Carver, “Deep anisotropic etching of tapered channels in (110)—oriented silicon,” Chem. Mater. 1, 634–639 (1989).
[CrossRef]

Kelly, J. J.

J. J. Kelly and H. G. G. Philipsen, “Anisotropy in the wet etching of semiconductors,” Curr. Opin. Solid State Mater. Sci. 9, 84–90 (2005).
[CrossRef]

Kikuchi, K.

C. S. Goh, S. Y. Set, and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

Kottler, C.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Li, Z.-Y.

Z.-F. Sang and Z.-Y. Li, “Properties of defect modes in one-dimensional photonic crystals containing a graded defect layer,” Opt. Commun. 273, 162–166 (2007).
[CrossRef]

Lipson, A.

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).
[CrossRef]

A. Lipson and E. M. Yeatman, “Low-loss one-dimensional photonic band gap filter in (110) silicon,” Opt. Lett. 31, 395–397 (2006).
[CrossRef] [PubMed]

Ma, E.

L. H. Domash, E. Ma, N. Nemchuk, A. Payne, and M. Wu, “Tunable thin film filters,” in Optical Fiber Communication Conference, Vol. 2 of 2003 OSA Technical Digest Series (2003), pp. 522–524.

Meade, R. D.

J. D. Joannopolous, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals, Molding the Flow of Light,” 2nd ed. (Princeton University Press, 2007).

Nashchekin, A. V.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Nemchuk, N.

L. H. Domash, E. Ma, N. Nemchuk, A. Payne, and M. Wu, “Tunable thin film filters,” in Optical Fiber Communication Conference, Vol. 2 of 2003 OSA Technical Digest Series (2003), pp. 522–524.

Payne, A.

L. H. Domash, E. Ma, N. Nemchuk, A. Payne, and M. Wu, “Tunable thin film filters,” in Optical Fiber Communication Conference, Vol. 2 of 2003 OSA Technical Digest Series (2003), pp. 522–524.

Peng, P.-C.

P.-C. Peng, H.-Y. Cheng, and S. Chi, “Wavelength tunable add-drop multiplexers using fiber Fabry Perot tunable filters for bidirectional wavelength division multiplexing networks,” Opt. Eng. 43, 2422–2425 (2004).
[CrossRef]

Pfeiffer, F.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Philipsen, H. G. G.

J. J. Kelly and H. G. G. Philipsen, “Anisotropy in the wet etching of semiconductors,” Curr. Opin. Solid State Mater. Sci. 9, 84–90 (2005).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Rehman, E. A.

E. A. Rehman and A. Shaarawi, “Defect mode in periodic and quasiperiodic one-dimensional photonic structures,” J. Mater. Sci.: Mater. Electron. 20, S153–S158 (2009).
[CrossRef]

Remenyuk, A. D.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Rohbeck, T.

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Sang, Z.-F.

Z.-F. Sang and Z.-Y. Li, “Properties of defect modes in one-dimensional photonic crystals containing a graded defect layer,” Opt. Commun. 273, 162–166 (2007).
[CrossRef]

Schattenburg, M. L.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio free standing gratings in silicon on insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597(2007).
[CrossRef]

Set, S. Y.

C. S. Goh, S. Y. Set, and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

Shaarawi, A.

E. A. Rehman and A. Shaarawi, “Defect mode in periodic and quasiperiodic one-dimensional photonic structures,” J. Mater. Sci.: Mater. Electron. 20, S153–S158 (2009).
[CrossRef]

Soukoulis, C. M.

K. Busch, C. T. Chan, and C. M. Soukoulis, “Techniques for band structures and defect states in photonic crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Springer, 1996), pp. 465–485.

Stievater, T. H.

Tolmachev, V. A.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Vlasova, E. N.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Volchek, B. Z.

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Winn, J. N.

J. D. Joannopolous, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals, Molding the Flow of Light,” 2nd ed. (Princeton University Press, 2007).

Wu, M.

L. H. Domash, E. Ma, N. Nemchuk, A. Payne, and M. Wu, “Tunable thin film filters,” in Optical Fiber Communication Conference, Vol. 2 of 2003 OSA Technical Digest Series (2003), pp. 522–524.

Yeatman, E. M.

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).
[CrossRef]

A. Lipson and E. M. Yeatman, “Low-loss one-dimensional photonic band gap filter in (110) silicon,” Opt. Lett. 31, 395–397 (2006).
[CrossRef] [PubMed]

Chem. Mater. (1)

E. S. Kalesar and M. W. Carver, “Deep anisotropic etching of tapered channels in (110)—oriented silicon,” Chem. Mater. 1, 634–639 (1989).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

J. J. Kelly and H. G. G. Philipsen, “Anisotropy in the wet etching of semiconductors,” Curr. Opin. Solid State Mater. Sci. 9, 84–90 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. S. Goh, S. Y. Set, and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1306–1308 (2002).
[CrossRef]

J. Mater. Sci.: Mater. Electron. (1)

E. A. Rehman and A. Shaarawi, “Defect mode in periodic and quasiperiodic one-dimensional photonic structures,” J. Mater. Sci.: Mater. Electron. 20, S153–S158 (2009).
[CrossRef]

J. Microelectromech. Syst. (1)

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio free standing gratings in silicon on insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597(2007).
[CrossRef]

Microelectron. Eng. (1)

C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, “Fabrication of diffraction gratings for hard X ray phase contrast imaging,” Microelectron. Eng. 84, 1172–1177 (2007).
[CrossRef]

Opt. Commun. (1)

Z.-F. Sang and Z.-Y. Li, “Properties of defect modes in one-dimensional photonic crystals containing a graded defect layer,” Opt. Commun. 273, 162–166 (2007).
[CrossRef]

Opt. Eng. (1)

P.-C. Peng, H.-Y. Cheng, and S. Chi, “Wavelength tunable add-drop multiplexers using fiber Fabry Perot tunable filters for bidirectional wavelength division multiplexing networks,” Opt. Eng. 43, 2422–2425 (2004).
[CrossRef]

Opt. Lett. (2)

Semiconductors (1)

V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z. Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova, “One-dimensional photonic crystal obtained using vertical anisotropic etching of silicon,” Semiconductors 36, 932–935 (2002).
[CrossRef]

Other (6)

L. H. Domash, E. Ma, N. Nemchuk, A. Payne, and M. Wu, “Tunable thin film filters,” in Optical Fiber Communication Conference, Vol. 2 of 2003 OSA Technical Digest Series (2003), pp. 522–524.

J. D. Joannopolous, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals, Molding the Flow of Light,” 2nd ed. (Princeton University Press, 2007).

C.M.Soukoulis, ed., “Photonic band gap materials,” in Proceedings of the NATO Advanced Study Institute on Photonic Band Gap Materials (Elounda, 1995), pp. 563–665.

K. Busch, C. T. Chan, and C. M. Soukoulis, “Techniques for band structures and defect states in photonic crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Springer, 1996), pp. 465–485.

University of Reading, “Infrared multilayer laboratory,” www.irfilters.reading.ac.uk/library/technical_data/infrared_materials/si_dispersion.htm.

A. Ghatak, Optics, 3rd ed. (McGraw-Hill, 1994), pp. 14.2–14.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Single-layer process flow optimized for the fabrication of PBG structures with fiber grooves.

Fig. 2
Fig. 2

(a) SEM image of the PC with in-plane fiber grooves, (b) SEM image of sample F4, and (c) SEM image of sample F3 with defect layers at the center of each sample.

Fig. 3
Fig. 3

Cross-sectional view of the fiber grooves of depth 73.8 μm and width of 200 μm on top, and the slanted ( 111 ) plane is clearly seen, which limits the etch depth.

Fig. 4
Fig. 4

(a) Schematic representation of the test setup and (b) microscopic ( 100 × magnification) image of the test setup showing micro ball-lensed fiber mounted inside the fiber grooves.

Fig. 5
Fig. 5

Normalized transmittance of the filters measured experimentally.

Fig. 6
Fig. 6

Normalized transmittance of the filters estimated theoretically.

Fig. 7
Fig. 7

Free space coupling loss of the filter (F2) plotted as a function of axial length.

Fig. 8
Fig. 8

Spectral response of the two halves, PC1 (red curve with squares) and PC2 (blue curve with circles), and the total response (black curve with solid stars) of the combined system sample F1.

Fig. 9
Fig. 9

Spectral response of the two halves, PC1 (red curve with squares) and PC2 (blue curve with circles), and the total response (black curve with solid stars) of the combined system sample F2.

Tables (3)

Tables Icon

Table 1 Structural Details of the Samples

Tables Icon

Table 2 Defect Modes and their Linewidths

Tables Icon

Table 3 Stop Band, Band Edges, and Defect Modes of the Structures

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L = 2 d 3 W 2 .
T = 1 { R 1 2 + R 2 2 + 2 R 1 R 2 cos 2 δ 1 + R 1 2 R 2 2 + 2 R 1 R 2 cos 2 δ } ,

Metrics