Abstract

We propose two novel methods to make mode-field expanders using photonic crystal fibers (PCFs). By heating and collapsing the center rings of airholes around the core using the selective airhole collapse technique, we enlarge the core of the fibers and get mode-field expanders. Meanwhile, by heating and controlled shrinking all airholes of the PCFs, power confinement in the core will decrease and the mode-field diameter of the fibers will be enlarged, too. Both methods are studied in theory and experiment.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
    [CrossRef] [PubMed]
  2. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  4. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  5. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
    [CrossRef] [PubMed]
  6. A. O. Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  7. V. Tombelaine, A. Labruyère, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
    [CrossRef] [PubMed]
  8. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812–814(2002).
    [CrossRef]
  9. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32, 328–330 (2007).
    [CrossRef] [PubMed]
  10. Z. Chen, C. Xiong, L. Xiao, W. Wadsworth, and T. Birks, “More-than-threefold expansion of highly-nonlinear PCF cores for low-loss fusion-splicing,” Opt. Lett. 34, 2240–2242 (2009).
    [CrossRef] [PubMed]
  11. J. Nishimura and K. Morishita, “Mode-field expansion and reduction in dispersive fibers by local heat treatments,” IEEE J. Sel. Top. Quantum Electron. 5, 1260–1265 (1999).
    [CrossRef]
  12. K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
    [CrossRef]
  13. P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode field fiber using microoptics,” J. Lightwave Technol. 20, 836–872 (2002).
    [CrossRef]
  14. P. Pal and W. H. Knox, “Low loss fusion splicing of micron scale silica fibers,” Opt. Express 16, 11568–11573(2008).
    [CrossRef] [PubMed]
  15. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31, 2672–2674 (2006).
    [CrossRef] [PubMed]
  16. W. J. Wadsworth, A. Witkowska, and S. G. Leon-Saval, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005).
    [CrossRef] [PubMed]
  17. J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987).
    [CrossRef]
  18. S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
    [CrossRef]
  19. J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
    [CrossRef]

2011 (1)

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2006 (2)

2005 (1)

2004 (1)

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

2003 (2)

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

2002 (2)

P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode field fiber using microoptics,” J. Lightwave Technol. 20, 836–872 (2002).
[CrossRef]

B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812–814(2002).
[CrossRef]

2000 (2)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. O. Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

1999 (1)

J. Nishimura and K. Morishita, “Mode-field expansion and reduction in dispersive fibers by local heat treatments,” IEEE J. Sel. Top. Quantum Electron. 5, 1260–1265 (1999).
[CrossRef]

1997 (1)

1987 (1)

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987).
[CrossRef]

1986 (1)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
[CrossRef]

Arriaga, J.

A. O. Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Bartelt, H.

Birks, T.

Birks, T. A.

Bjarklev, A.

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

Blanch, A. O.

Chanclou, P.

P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode field fiber using microoptics,” J. Lightwave Technol. 20, 836–872 (2002).
[CrossRef]

Chen, H.-W.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Chen, J.-B.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Chen, S.-P.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Chen, Z.

Chen, Z.-L.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Couderc, V.

Eom, J. B.

Gravey, P.

P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode field fiber using microoptics,” J. Lightwave Technol. 20, 836–872 (2002).
[CrossRef]

Hou, J.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Hussey, C. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
[CrossRef]

Jamier, R.

Jedrzejewski, K. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
[CrossRef]

Kim, J.

Knight, J. C.

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

A. O. Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Knox, W. H.

Kobelke, J.

Labruyère, A.

Lægsgaard, J.

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

Lai, K.

Lee, B. H.

Leon-Saval, S. G.

Leproux, P.

Liu, Z.-J.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Love, J. D.

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987).
[CrossRef]

Mangan, B. J.

Martinez, F.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
[CrossRef]

Minelly, J. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
[CrossRef]

Moon, D. S.

Morishita, K.

J. Nishimura and K. Morishita, “Mode-field expansion and reduction in dispersive fibers by local heat treatments,” IEEE J. Sel. Top. Quantum Electron. 5, 1260–1265 (1999).
[CrossRef]

Nishimura, J.

J. Nishimura and K. Morishita, “Mode-field expansion and reduction in dispersive fibers by local heat treatments,” IEEE J. Sel. Top. Quantum Electron. 5, 1260–1265 (1999).
[CrossRef]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Paek, U.-C.

Pal, P.

Payne, F. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
[CrossRef]

Ramanitra, H.

P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode field fiber using microoptics,” J. Lightwave Technol. 20, 836–872 (2002).
[CrossRef]

Reichel, V.

Russell, P.

Russell, P. St. J.

A. O. Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Schuster, K.

Thual, M.

P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode field fiber using microoptics,” J. Lightwave Technol. 20, 836–872 (2002).
[CrossRef]

Tombelaine, V.

Wadsworth, W.

Wadsworth, W. J.

Wang, J.-H.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Witkowska, A.

Xiao, L.

Xiong, C.

Xu, X.-J.

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Yang, G.-H.

Electron. Lett. (2)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fiber gap devices,” Electron. Lett. 22, 105–106 (1986).
[CrossRef]

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Nishimura and K. Morishita, “Mode-field expansion and reduction in dispersive fibers by local heat treatments,” IEEE J. Sel. Top. Quantum Electron. 5, 1260–1265 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Lightwave Technol. (2)

P. Chanclou, H. Ramanitra, P. Gravey, and M. Thual, “Design and performance of expanded mode field fiber using microoptics,” J. Lightwave Technol. 20, 836–872 (2002).
[CrossRef]

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

Laser Phys. (1)

S.-P. Chen, J.-H. Wang, H.-W. Chen, Z.-L. Chen, J. Hou, X.-J. Xu, J.-B. Chen, and Z.-J. Liu, “20 W all fiber supercontinuum generation from picosecond MOPA pumped photonic crystal fiber,” Laser Phys. 21, 519–521 (2011).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851(2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic and process of the selective airhole collapse technique.

Fig. 2
Fig. 2

Simulated fundamental mode field of PCFs at the wavelength of 1.55 μm with s different rings of airholes collapsed around the core using BPM. (a) Initial PCF and (b)–(d) cases of one, two, and three rings of holes collapsed with core diameter 4 Λ - d , 6 Λ - d and 8 Λ - d , respectively.

Fig. 3
Fig. 3

Micrographs of the PCF expanders’ (a)–(d) cross section and (e)–(h) the near-field optical pattern distribution of the supercontinuum source.

Fig. 4
Fig. 4

MFDs with different collapse ratios.

Fig. 5
Fig. 5

Micrographs of the PCF cross section with different collapse ratios. Collapse ratios of (a)–(f) are 0, 15%, 30%, 48%, 73%, and more than 90%, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P st ( bar ) = 6 / d ( μm ) ,
( Λ Λ 0 ) 2 = 3 2 π 4 ( d 0 Λ 0 ) 2 3 2 π 4 ( d Λ ) 2 ,

Metrics