Abstract

Stimulated Brillouin scattering (SBS) has become a favorable underlying mechanism in many demonstrations of all-optical variable delay in standard fibers, often referred to as slow and fast light. Over 100 journal papers and numerous conference sessions have been dedicated to SBS slow light since 2005. In this paper, recent research in this area is reviewed. Following a short introduction to the topic, several specific trends in contemporary work are highlighted: the optimization of the SBS pump spectrum for extended slow light delay and reduced pulse distortion; SBS slow light demonstrations in nonstandard, highly nonlinear fibers; applications of SBS slow light to the delay of analog waveforms; and the role of polarization. Finally, a brief concluding perspective is provided.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol  43, pp. 497–530.
    [CrossRef]
  2. Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009).
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999).
    [CrossRef]
  4. C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  5. P. C. Ku, F. Sedgwich, C. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
    [CrossRef] [PubMed]
  6. H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  7. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2, 474–481 (2008).
    [CrossRef]
  8. G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
    [CrossRef]
  9. J. B. Khurgin, “Bandwidth limitation in slow light schemes,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 293–320.
  10. J. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [CrossRef] [PubMed]
  11. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [CrossRef] [PubMed]
  12. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1.
    [PubMed]
  13. M. González Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  14. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88(2005).
    [CrossRef] [PubMed]
  15. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
    [CrossRef] [PubMed]
  16. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  17. C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Distortion effects on data pulses in a slow light tunable delay line due to stimulated Brillouin scattering in a highly nonlinear fiber,” in Proceedings of ECOC 2005 (European Conference on Optical Communication, 2006), paper Mo 4.5.2.
  18. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  19. L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 173–193.
  20. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
    [CrossRef] [PubMed]
  21. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765(2005).
    [CrossRef] [PubMed]
  22. M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
    [CrossRef] [PubMed]
  23. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, “On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers,” Opt. Express 14, 5877–5884 (2006).
    [CrossRef] [PubMed]
  24. A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
    [CrossRef] [PubMed]
  25. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
    [CrossRef]
  26. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14, 12063–12070 (2006).
    [CrossRef] [PubMed]
  27. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14, 5860–5865(2006).
    [CrossRef] [PubMed]
  28. C. Jáuregui Misas, P. Petropoulos, and D. J. Richardson, “Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber,” J. Lightwave Technol. 25, 216–221 (2007).
    [CrossRef]
  29. G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation,” J. Lightwave Technol. 26, 492–498 (2008).
    [CrossRef]
  30. S. G. Yang, H. W. Chen, C. Y. Qiu, M. Chen, M. Chen, S. Xie, J. Li, and W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008).
    [CrossRef] [PubMed]
  31. K. S. Abedin, G. W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44, 16–17 (2008).
    [CrossRef]
  32. K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16, 225–230 (2008).
    [CrossRef] [PubMed]
  33. A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
    [CrossRef]
  34. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
    [CrossRef]
  35. J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
    [CrossRef]
  36. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
    [CrossRef] [PubMed]
  37. D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25, C61–C64 (2008).
    [CrossRef]
  38. A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
    [CrossRef] [PubMed]
  39. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
    [CrossRef]
  40. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007).
    [CrossRef] [PubMed]
  41. A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006).
    [CrossRef] [PubMed]
  42. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
    [CrossRef] [PubMed]
  43. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007).
    [CrossRef] [PubMed]
  44. Z. Lu, Y. Dong, and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871–1877 (2007).
    [CrossRef] [PubMed]
  45. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032(2008).
    [CrossRef] [PubMed]
  46. A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
    [CrossRef]
  47. K.-Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
    [CrossRef] [PubMed]
  48. J. B. Khurgin, “Performance limits of delay lines based on optical amplifiers,” Opt. Lett. 31, 948–950 (2006).
    [CrossRef] [PubMed]
  49. A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
    [CrossRef]
  50. Z. Zhang, X. Zhou, R. Liang, and S. Shi, “Influence of third-order dispersion on delay performance in broadband Brillouin slow light,” J. Opt. Soc. Am. B 26, 2211–2217 (2009).
    [CrossRef]
  51. L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979 (2007).
    [CrossRef] [PubMed]
  52. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
    [CrossRef] [PubMed]
  53. E. Cabrera-Granado, O. G. Calderón, S. Melle, and D. J. Gauthier, “Observation of large 10 Gb/s SBS slow light delay with low distortion using an optimized gain profile,” Opt. Express 16, 16032–16042 (2008).
    [CrossRef] [PubMed]
  54. Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697(2011).
    [CrossRef] [PubMed]
  55. S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–10692 (2006).
    [CrossRef] [PubMed]
  56. T. Schneider, M. Junker, and K.-U. Lauterbach, “Time delay enhancement in stimulated-Brillouin-scattering-based slow-light systems,” Opt. Lett. 32, 220–222 (2007).
    [CrossRef] [PubMed]
  57. T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606–9613 (2007).
    [CrossRef] [PubMed]
  58. S. Wang, L. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
    [CrossRef] [PubMed]
  59. Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
    [CrossRef]
  60. S. Chin and L. Thévenaz, “Optimized shaping of isolated pulses in Brillouin fiber slow-light systems,” Opt. Lett. 34, 707–709 (2009).
    [CrossRef] [PubMed]
  61. Z. M. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805(2009).
    [CrossRef]
  62. B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
    [CrossRef]
  63. B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
    [CrossRef]
  64. R. Zhang, Y. Zhu, J. Wang, and D. J. Gauthier, “Slow light with a swept-frequency source,” Opt. Express 18, 27263–27269(2010).
    [CrossRef]
  65. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
  66. A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
    [CrossRef]
  67. K. S. Abedin, “Stimulated Brillouin scattering in single-mode tellurite glass fiber,” Opt. Express 14, 11766–11772(2006).
    [CrossRef] [PubMed]
  68. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
    [CrossRef]
  69. P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems (William Andrew, 2001).
  70. D. T. K. Tong and M. C. Wu, “Multiwavelength optically controlled phased array antennas,” IEEE Trans. Microwave Theory Tech. 46, 108–115 (1998).
    [CrossRef]
  71. M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
    [CrossRef]
  72. O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wideband applications,” IEEE Photon. Technol. Lett. 17, 1076–1078 (2005).
    [CrossRef]
  73. J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
    [CrossRef]
  74. R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol. 23, 4026–4036(2005).
    [CrossRef]
  75. S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.
  76. L. Gao, S. I. Herriot, and K. H. Wagner, “Sluggish light for radiofrequency true-time-delay applications with a large delay-bandwidth product,” Opt. Lett. 31, 3360–3362 (2006).
    [CrossRef] [PubMed]
  77. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  78. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
    [CrossRef] [PubMed]
  79. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006).
    [CrossRef] [PubMed]
  80. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
    [CrossRef]
  81. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
    [CrossRef]
  82. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
    [CrossRef] [PubMed]
  83. R. C. Jones, “A new calculus for the treatment of optical system,” J. Opt. Soc. Am. 37, 107–110 (1947).
    [CrossRef]
  84. Polarized Light Fundamentals and Applications, E.Collett, ed. (Marcel Dekker, 1993).
  85. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
    [CrossRef]
  86. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
    [CrossRef] [PubMed]
  87. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.
  88. M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
    [CrossRef] [PubMed]
  89. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
    [CrossRef] [PubMed]
  90. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
    [CrossRef] [PubMed]
  91. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
    [CrossRef] [PubMed]
  92. R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403–2411 (2007).
    [CrossRef]
  93. M. Gonzalez Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009).
    [CrossRef] [PubMed]
  94. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
    [CrossRef]
  95. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
    [CrossRef]
  96. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
    [CrossRef] [PubMed]
  97. K.-Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express 17, 10344–10349 (2009).
    [CrossRef] [PubMed]
  98. K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time–domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
    [CrossRef]
  99. A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
    [CrossRef]
  100. L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22, 712–714 (2010).
    [CrossRef]
  101. A. Zadok, A. Eyal, M. Tur, and L. Thévenaz, “Polarization attributes of stimulated Brillouin scattering slow light in fiber,” Proc. SPIE 7949, 79490A (2011).
    [CrossRef]
  102. V. P. Kalosha, L. Chen, and X. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693–12703 (2006).
    [CrossRef] [PubMed]
  103. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
    [CrossRef]
  104. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [CrossRef]
  105. L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
    [CrossRef]
  106. Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
    [CrossRef]
  107. Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008).
    [CrossRef]
  108. A. Marandi, B. T. Lantz, and R. L. Byer, “Balancing interferometers with slow light elements,” Opt. Lett. 36, 933–935(2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (9)

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
[CrossRef] [PubMed]

K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time–domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
[CrossRef]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[CrossRef] [PubMed]

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef] [PubMed]

R. Zhang, Y. Zhu, J. Wang, and D. J. Gauthier, “Slow light with a swept-frequency source,” Opt. Express 18, 27263–27269(2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
[CrossRef]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22, 712–714 (2010).
[CrossRef]

2009 (9)

Z. M. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805(2009).
[CrossRef]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[CrossRef]

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef] [PubMed]

L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
[CrossRef]

S. Chin and L. Thévenaz, “Optimized shaping of isolated pulses in Brillouin fiber slow-light systems,” Opt. Lett. 34, 707–709 (2009).
[CrossRef] [PubMed]

M. Gonzalez Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009).
[CrossRef] [PubMed]

K.-Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express 17, 10344–10349 (2009).
[CrossRef] [PubMed]

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

Z. Zhang, X. Zhou, R. Liang, and S. Shi, “Influence of third-order dispersion on delay performance in broadband Brillouin slow light,” J. Opt. Soc. Am. B 26, 2211–2217 (2009).
[CrossRef]

2008 (17)

G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

S. G. Yang, H. W. Chen, C. Y. Qiu, M. Chen, M. Chen, S. Xie, J. Li, and W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16, 225–230 (2008).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
[CrossRef] [PubMed]

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation,” J. Lightwave Technol. 26, 492–498 (2008).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
[CrossRef] [PubMed]

T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032(2008).
[CrossRef] [PubMed]

S. Wang, L. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
[CrossRef] [PubMed]

D. R. Walker, M. Bashkansky, A. Gulian, F. K. Fatemi, and M. Steiner, “Stabilizing slow light delay in stimulated Brillouin scattering using a Faraday rotator mirror,” J. Opt. Soc. Am. B 25, C61–C64 (2008).
[CrossRef]

E. Cabrera-Granado, O. G. Calderón, S. Melle, and D. J. Gauthier, “Observation of large 10 Gb/s SBS slow light delay with low distortion using an optimized gain profile,” Opt. Express 16, 16032–16042 (2008).
[CrossRef] [PubMed]

Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef] [PubMed]

K. S. Abedin, G. W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44, 16–17 (2008).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

2007 (17)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403–2411 (2007).
[CrossRef]

K.-Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Time delay enhancement in stimulated-Brillouin-scattering-based slow-light systems,” Opt. Lett. 32, 220–222 (2007).
[CrossRef] [PubMed]

Z. Lu, Y. Dong, and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871–1877 (2007).
[CrossRef] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

C. Jáuregui Misas, P. Petropoulos, and D. J. Richardson, “Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber,” J. Lightwave Technol. 25, 216–221 (2007).
[CrossRef]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606–9613 (2007).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979 (2007).
[CrossRef] [PubMed]

2006 (15)

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef] [PubMed]

J. B. Khurgin, “Performance limits of delay lines based on optical amplifiers,” Opt. Lett. 31, 948–950 (2006).
[CrossRef] [PubMed]

H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14, 5860–5865(2006).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006).
[CrossRef] [PubMed]

E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, “On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers,” Opt. Express 14, 5877–5884 (2006).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef] [PubMed]

L. Gao, S. I. Herriot, and K. H. Wagner, “Sluggish light for radiofrequency true-time-delay applications with a large delay-bandwidth product,” Opt. Lett. 31, 3360–3362 (2006).
[CrossRef] [PubMed]

S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–10692 (2006).
[CrossRef] [PubMed]

K. S. Abedin, “Stimulated Brillouin scattering in single-mode tellurite glass fiber,” Opt. Express 14, 11766–11772(2006).
[CrossRef] [PubMed]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14, 12063–12070 (2006).
[CrossRef] [PubMed]

V. P. Kalosha, L. Chen, and X. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693–12703 (2006).
[CrossRef] [PubMed]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

2005 (15)

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88(2005).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
[CrossRef] [PubMed]

J. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[CrossRef] [PubMed]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
[CrossRef]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765(2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef] [PubMed]

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol. 23, 4026–4036(2005).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wideband applications,” IEEE Photon. Technol. Lett. 17, 1076–1078 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

2004 (1)

2001 (2)

C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
[CrossRef]

2000 (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef] [PubMed]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

1998 (1)

D. T. K. Tong and M. C. Wu, “Multiwavelength optically controlled phased array antennas,” IEEE Trans. Microwave Theory Tech. 46, 108–115 (1998).
[CrossRef]

1997 (1)

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

1994 (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

1989 (2)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

1947 (1)

Abedin, K. S.

Aggarwal, I.

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Andres, M. V.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

Bao, X.

Bashkansky, M.

Behroozi, C.

C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999).
[CrossRef]

Berger, P.

Bermejo, A.

S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.

Bernini, R.

Beugnot, J.-C.

L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Bigo, S.

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Bourderionnet, J.

Boyd, R. W.

Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
[CrossRef]

Z. M. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805(2009).
[CrossRef]

G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008).
[CrossRef]

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403–2411 (2007).
[CrossRef]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol  43, pp. 497–530.
[CrossRef]

Byer, R. L.

Cabrera-Granado, E.

Calderón, O. G.

Camacho, R. M.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

Capmany, J.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.

Chang, S. W.

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Chen, H. W.

Chen, L.

Chen, M.

Chen, W.

Chin, S.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time–domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
[CrossRef]

L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
[CrossRef]

S. Chin and L. Thévenaz, “Optimized shaping of isolated pulses in Brillouin fiber slow-light systems,” Opt. Lett. 34, 707–709 (2009).
[CrossRef] [PubMed]

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–10692 (2006).
[CrossRef] [PubMed]

Choi, M.-S.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

Chuang, S. L.

Cirigliano, M.

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Corral, J. L.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Cruz, J. L.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

Dahan, D.

Dawes, A. M. C.

den Besten, J. H.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

Dicaire, I.

L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
[CrossRef]

Dolfi, D.

Dong, L.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

Dong, Y.

Dutton, Z.

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14, 12063–12070 (2006).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999).
[CrossRef]

Ebnali-Heidari, M.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Eggleton, B. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Eisenstein, G.

Emjelen, R. J.

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Enard, A.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Estebe, E.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Eyal, A.

A. Zadok, A. Eyal, M. Tur, and L. Thévenaz, “Polarization attributes of stimulated Brillouin scattering slow light in fiber,” Proc. SPIE 7949, 79490A (2011).
[CrossRef]

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

Fatemi, F. K.

Fatome, J.

Fazal, I.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Fejer, M. M.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Ferrario, M.

Florea, C.

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Gaeta, A.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Gaeta, A. L.

G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

J. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1.
[PubMed]

Galiere, J.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Galtarossa, A.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Gao, L.

Gasulla, I.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

Gauthier, D. J.

Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697(2011).
[CrossRef] [PubMed]

R. Zhang, Y. Zhu, J. Wang, and D. J. Gauthier, “Slow light with a swept-frequency source,” Opt. Express 18, 27263–27269(2010).
[CrossRef]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
[CrossRef] [PubMed]

E. Cabrera-Granado, O. G. Calderón, S. Melle, and D. J. Gauthier, “Observation of large 10 Gb/s SBS slow light delay with low distortion using an optimized gain profile,” Opt. Express 16, 16032–16042 (2008).
[CrossRef] [PubMed]

G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol  43, pp. 497–530.
[CrossRef]

Gehring, G. M.

Gersen, H.

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Gimeno, B.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

Gonzalez Herraez, M.

González Herráez, M.

Gonzalez-Herraez, M.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef] [PubMed]

Grillet, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Grosskopf, G.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Gulian, A.

Hardange, J.-P.

P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems (William Andrew, 2001).

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999).
[CrossRef]

Henker, R.

Herrera, J.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Herriot, S. I.

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Hotate, K.

Howell, J. C.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

Hu, W.

Jaouen, Y.

Jáuregui Misas, C.

Jones, R. C.

Junker, M.

Kalosha, V. P.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Kato, K.

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
[CrossRef]

Khurgin, J. B.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[CrossRef]

J. B. Khurgin, “Performance limits of delay lines based on optical amplifiers,” Opt. Lett. 31, 948–950 (2006).
[CrossRef] [PubMed]

J. B. Khurgin, “Bandwidth limitation in slow light schemes,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 293–320.

Kjær, R.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef] [PubMed]

Kondratko, P.

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Ku, P. C.

Ku, P.-C.

Kuipers, L.

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Kurashima, T.

Lacomme, P.

P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems (William Andrew, 2001).

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Lantz, B. T.

Lauterbach, K.-U.

Lee, K.

Lee, M.

Lee, S. B.

Li, J.

Li, Q.

Li, T.

Liang, R.

Liu, C.

C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Liu, Y.

Lloret, J.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

Loayssa, A.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef] [PubMed]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

Lopez, J.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Lu, G. W.

K. S. Abedin, G. W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44, 16–17 (2008).
[CrossRef]

Lu, Z.

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Luo, T.

C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Distortion effects on data pulses in a slow light tunable delay line due to stimulated Brillouin scattering in a highly nonlinear fiber,” in Proceedings of ECOC 2005 (European Conference on Optical Communication, 2006), paper Mo 4.5.2.

Mafang, S. F.

L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
[CrossRef]

Marandi, A.

Marazzi, L.

Marceaux, A.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Marchais, J.-C.

P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems (William Andrew, 2001).

Martelli, P.

Marti, J.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Martinelli, M.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef] [PubMed]

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Martinez, J. M.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Martínez Gámez, M. A.

Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
[CrossRef]

Masuda, H.

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
[CrossRef]

Melle, S.

Millot, G.

Minardo, A.

Miyazaki, T.

K. S. Abedin, G. W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44, 16–17 (2008).
[CrossRef]

Monat, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Mori, A.

Morin, P.

Mork, J.

S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.

Mørk, J.

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[CrossRef]

Moss, D. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Narum, P.

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403–2411 (2007).
[CrossRef]

Neifeld, M. A.

Nevet, A.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Normant, E.

P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems (William Andrew, 2001).

O’Faolain, L.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Ohishi, Y.

Ohman, F.

S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.

Oikawa, K.

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
[CrossRef]

Okawachi, Y.

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1.
[PubMed]

Orbach, N.

Ortega, B.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

Palinginis, P.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22, 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Pant, R.

Parillaud, O.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Petropoulos, P.

Piqueras, M. A.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Pitois, S.

Polo, V.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Primerov, N.

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Pureza, P.

Puzera, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Qin, G.

Qiu, C. Y.

Raz, O.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol. 23, 4026–4036(2005).
[CrossRef]

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wideband applications,” IEEE Photon. Technol. Lett. 17, 1076–1078 (2005).
[CrossRef]

Ren, L.

Richardson, D. J.

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Rotman, R.

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wideband applications,” IEEE Photon. Technol. Lett. 17, 1076–1078 (2005).
[CrossRef]

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol. 23, 4026–4036(2005).
[CrossRef]

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Sagues, M.

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

Sakamoto, T.

Sales, S.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.

Sanchis, P.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Sancho, J.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

Sanghera, J.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Santagiustina, M.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22, 712–714 (2010).
[CrossRef]

Santaguistina, M.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Schenato, L.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Schneider, T.

Schweinsberg, A.

Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Sedgwich, F.

Sharping, J.

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1.
[PubMed]

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Shi, S.

Shi, Z.

Shi, Z. M.

Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
[CrossRef]

Z. M. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805(2009).
[CrossRef]

Z. M. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B 25, C136–C143 (2008).
[CrossRef]

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

Shikano, K.

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
[CrossRef]

Shimizu, M.

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
[CrossRef]

Shiraki, K.

Shumakher, E.

Smit, M. K.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Soares, F. M.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Song, K. Y.

Song, K.-Y.

K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time–domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
[CrossRef]

K.-Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express 17, 10344–10349 (2009).
[CrossRef] [PubMed]

K.-Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
[CrossRef] [PubMed]

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef] [PubMed]

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
[CrossRef] [PubMed]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88(2005).
[CrossRef] [PubMed]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765(2005).
[CrossRef] [PubMed]

Sotobayashi, H.

Steiner, M.

Stenner, M. D.

Su, H.

Su, Y.

Suzuki, T.

Thévenaz, L.

A. Zadok, A. Eyal, M. Tur, and L. Thévenaz, “Polarization attributes of stimulated Brillouin scattering slow light in fiber,” Proc. SPIE 7949, 79490A (2011).
[CrossRef]

K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time–domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
[CrossRef]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[CrossRef] [PubMed]

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

S. Chin and L. Thévenaz, “Optimized shaping of isolated pulses in Brillouin fiber slow-light systems,” Opt. Lett. 34, 707–709 (2009).
[CrossRef] [PubMed]

M. Gonzalez Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009).
[CrossRef] [PubMed]

L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef] [PubMed]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14, 5860–5865(2006).
[CrossRef] [PubMed]

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef] [PubMed]

S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–10692 (2006).
[CrossRef] [PubMed]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765(2005).
[CrossRef] [PubMed]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88(2005).
[CrossRef] [PubMed]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
[CrossRef] [PubMed]

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 173–193.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

Tomita, Y.

Tong, D. T. K.

D. T. K. Tong and M. C. Wu, “Multiwavelength optically controlled phased array antennas,” IEEE Trans. Microwave Theory Tech. 46, 108–115 (1998).
[CrossRef]

Tsuchiya, M.

Tucker, R. S.

Tur, M.

A. Zadok, A. Eyal, M. Tur, and L. Thévenaz, “Polarization attributes of stimulated Brillouin scattering slow light in fiber,” Proc. SPIE 7949, 79490A (2011).
[CrossRef]

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef] [PubMed]

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wideband applications,” IEEE Photon. Technol. Lett. 17, 1076–1078 (2005).
[CrossRef]

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol. 23, 4026–4036(2005).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

Ursini, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22, 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Valard, J.-L.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

van der Poel, M.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

van Howe, J.

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1.
[PubMed]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Vidal, B.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Vodjdani, N.

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

Vornehm, J. E.

Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
[CrossRef]

Vudyasetu, P. K.

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

Wagner, K. H.

Walker, D. R.

Wang, H.

Wang, J.

Wang, S.

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

White, T. P.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Willner, A. E.

B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384(2005).
[CrossRef]

C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Distortion effects on data pulses in a slow light tunable delay line due to stimulated Brillouin scattering in a highly nonlinear fiber,” in Proceedings of ECOC 2005 (European Conference on Optical Communication, 2006), paper Mo 4.5.2.

Wu, M. C.

D. T. K. Tong and M. C. Wu, “Multiwavelength optically controlled phased array antennas,” IEEE Trans. Microwave Theory Tech. 46, 108–115 (1998).
[CrossRef]

Xie, S.

Xu, C.

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1.
[PubMed]

Yamamoto, T.

Yan, L.

B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

Yan, L. S.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Yan, L.-S.

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Yang, J.-Y.

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Yang, S. G.

Yi, L.

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Distortion effects on data pulses in a slow light tunable delay line due to stimulated Brillouin scattering in a highly nonlinear fiber,” in Proceedings of ECOC 2005 (European Conference on Optical Communication, 2006), paper Mo 4.5.2.

Yvind, K.

Zadok, A.

A. Zadok, A. Eyal, M. Tur, and L. Thévenaz, “Polarization attributes of stimulated Brillouin scattering slow light in fiber,” Proc. SPIE 7949, 79490A (2011).
[CrossRef]

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

Zeni, L.

Zhang, B.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Zhang, L.

B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Distortion effects on data pulses in a slow light tunable delay line due to stimulated Brillouin scattering in a highly nonlinear fiber,” in Proceedings of ECOC 2005 (European Conference on Optical Communication, 2006), paper Mo 4.5.2.

Zhang, R.

Zhang, Z.

Zhou, X.

Zhu, Y.

Zhu, Z.

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Zilka, E.

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Electron. Lett. (3)

K. S. Abedin, G. W. Lu, and T. Miyazaki, “Slow light generation in singlemode Er-doped tellurite fibre,” Electron. Lett. 44, 16–17 (2008).
[CrossRef]

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg gratings for phased array antennas,” Electron. Lett. 33, 545–546(1997).
[CrossRef]

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultrawideband tellurite-based Raman fibre amplifier,” Electron. Lett. 37, 1442–1443 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (10)

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wideband applications,” IEEE Photon. Technol. Lett. 17, 1076–1078 (2005).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low distortion delay of GHz-wide RF signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[CrossRef]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).
[CrossRef]

B. Zhang, L.-S. Yan, J.-Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. Gaeta, “44 ns continuously tunable dispersionless optical delay element using PPLN waveguide with two pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19, 861–863(2007).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111–113 (1989).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22, 712–714 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

D. T. K. Tong and M. C. Wu, “Multiwavelength optically controlled phased array antennas,” IEEE Trans. Microwave Theory Tech. 46, 108–115 (1998).
[CrossRef]

M. A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J. M. Martinez, P. Sanchis, V. Polo, J. L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J. H. den Besten, F. M. Soares, M. K. Smit, and J. Marti, “Optically beamformed beam-switched adaptive antennas for fixed and mobile broadband wireless access networks,” IEEE Trans. Microwave Theory Tech. 54, 887–899 (2006).
[CrossRef]

J. Lightwave Technol. (11)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

R. Rotman, O. Raz, and M. Tur, “Analysis of a true time delay photonic beamformer for transmission of a linear frequency modulated waveform,” J. Lightwave Technol. 23, 4026–4036(2005).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

C. Jáuregui Misas, P. Petropoulos, and D. J. Richardson, “Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber,” J. Lightwave Technol. 25, 216–221 (2007).
[CrossRef]

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation,” J. Lightwave Technol. 26, 492–498 (2008).
[CrossRef]

G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

B. Zhang, L. Yan, L. Zhang, and A. E. Willner, “Multichannel SBS slow light using spectrally sliced incoherent pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

K.-Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time–domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
[CrossRef]

J. Mod. Opt. (1)

R. W. Boyd and P. Narum, “Slow- and fast-light: fundamental limitations,” J. Mod. Opt. 54, 2403–2411 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Puzera, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Nat. Photonics (1)

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

Nature (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–596 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Opt. Express (35)

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765(2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef] [PubMed]

J. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[CrossRef] [PubMed]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
[CrossRef] [PubMed]

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef] [PubMed]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88(2005).
[CrossRef] [PubMed]

Z. Lu, Y. Dong, and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871–1877 (2007).
[CrossRef] [PubMed]

L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, “Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979 (2007).
[CrossRef] [PubMed]

H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14, 5860–5865(2006).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006).
[CrossRef] [PubMed]

E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, “On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers,” Opt. Express 14, 5877–5884 (2006).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498–8505 (2006).
[CrossRef] [PubMed]

S. Chin, M. Gonzalez-Herraez, and L. Thévenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–10692 (2006).
[CrossRef] [PubMed]

K. S. Abedin, “Stimulated Brillouin scattering in single-mode tellurite glass fiber,” Opt. Express 14, 11766–11772(2006).
[CrossRef] [PubMed]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14, 12063–12070 (2006).
[CrossRef] [PubMed]

V. P. Kalosha, L. Chen, and X. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693–12703 (2006).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef] [PubMed]

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
[CrossRef] [PubMed]

E. Cabrera-Granado, O. G. Calderón, S. Melle, and D. J. Gauthier, “Observation of large 10 Gb/s SBS slow light delay with low distortion using an optimized gain profile,” Opt. Express 16, 16032–16042 (2008).
[CrossRef] [PubMed]

M. Gonzalez Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009).
[CrossRef] [PubMed]

K.-Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express 17, 10344–10349 (2009).
[CrossRef] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counterpropagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
[CrossRef] [PubMed]

T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032(2008).
[CrossRef] [PubMed]

S. Wang, L. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606–9613 (2007).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16, 225–230 (2008).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
[CrossRef] [PubMed]

J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
[CrossRef] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[CrossRef] [PubMed]

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18, 22906–22914 (2010).
[CrossRef] [PubMed]

R. Zhang, Y. Zhu, J. Wang, and D. J. Gauthier, “Slow light with a swept-frequency source,” Opt. Express 18, 27263–27269(2010).
[CrossRef]

Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19, 687–697(2011).
[CrossRef] [PubMed]

Opt. Lett. (11)

A. Marandi, B. T. Lantz, and R. L. Byer, “Balancing interferometers with slow light elements,” Opt. Lett. 36, 933–935(2011).
[CrossRef] [PubMed]

A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization induced distortion in stimulated Brillouin scattering slow light systems,” Opt. Lett. 34, 2530–2532 (2009).
[CrossRef] [PubMed]

S. Chin and L. Thévenaz, “Optimized shaping of isolated pulses in Brillouin fiber slow-light systems,” Opt. Lett. 34, 707–709 (2009).
[CrossRef] [PubMed]

K.-Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Time delay enhancement in stimulated-Brillouin-scattering-based slow-light systems,” Opt. Lett. 32, 220–222 (2007).
[CrossRef] [PubMed]

L. Gao, S. I. Herriot, and K. H. Wagner, “Sluggish light for radiofrequency true-time-delay applications with a large delay-bandwidth product,” Opt. Lett. 31, 3360–3362 (2006).
[CrossRef] [PubMed]

S. G. Yang, H. W. Chen, C. Y. Qiu, M. Chen, M. Chen, S. Xie, J. Li, and W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

J. B. Khurgin, “Performance limits of delay lines based on optical amplifiers,” Opt. Lett. 31, 948–950 (2006).
[CrossRef] [PubMed]

P. C. Ku, F. Sedgwich, C. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[CrossRef] [PubMed]

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
[CrossRef] [PubMed]

Phys. Lett. A (1)

Z. M. Shi, A. Schweinsberg, J. E. Vornehm Jr., M. A. Martínez Gámez, and R. W. Boyd, “Low distortion, continuously tunable, positive and negative time delays by slow and fast light using stimulated Brillouin scattering,” Phys. Lett. A 374, 4071–4074 (2010).
[CrossRef]

Phys. Rev. A (1)

Z. M. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805(2009).
[CrossRef]

Phys. Rev. Lett. (4)

H. Gersen, T. J. Karle, R. J. Emjelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. Zadok, A. Eyal, M. Tur, and L. Thévenaz, “Polarization attributes of stimulated Brillouin scattering slow light in fiber,” Proc. SPIE 7949, 79490A (2011).
[CrossRef]

L. Thévenaz, S. Chin, I. Dicaire, J.-C. Beugnot, S. F. Mafang, and M. González Herráez, “Experimental verification of the effect of slow light on molecular absorption,” Proc. SPIE 7503, 75034W (2009).
[CrossRef]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Other (11)

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

S. Sales, F. Ohman, A. Bermejo, J. Mork, and J. Capmany, “Slow and fast light in SOA-EA structures for phased array antennas,” in Proceedings of ECOC 2006 (European Conference on Optical Communication, 2006), paper We.3.61.

Polarized Light Fundamentals and Applications, E.Collett, ed. (Marcel Dekker, 1993).

P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems (William Andrew, 2001).

C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Distortion effects on data pulses in a slow light tunable delay line due to stimulated Brillouin scattering in a highly nonlinear fiber,” in Proceedings of ECOC 2005 (European Conference on Optical Communication, 2006), paper Mo 4.5.2.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 173–193.

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol  43, pp. 497–530.
[CrossRef]

Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009).

J. B. Khurgin, “Bandwidth limitation in slow light schemes,” in Slow Light: Science and Applications, J.B.Khurgin and R.S.Tucker, eds. (CRC, 2009), pp. 293–320.

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, and A. L. Gaeta, “All-optical, continuously tunable, nanosecond pulse delay using wavelength conversion and fiber dispersion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CTuT1.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Real (solid) and imaginary (dashed) parts of the SBS gain coefficient g ( ω s ) as a function of normalized frequency detuning ( Ω Ω B ) / Γ B for a continuous pump wave. The gain coefficient is normalized to g 0 | A p | 2 .

Fig. 2
Fig. 2

Spectrum of (a) pump wave frequency comb and (b) corresponding SBS gain as a function of frequency offset [45].

Fig. 3
Fig. 3

Measurements of delayed signal pulses. The SBS pump spectrum consisted of 20 discrete lines separated by Γ B [45].

Fig. 4
Fig. 4

Experimental results of DPSK slow light. Continuous delay up to 42 ps for a 10.7 Gigabit / s DPSK signal is achieved [46]. © 2008 IEEE

Fig. 5
Fig. 5

(a) Gaussian and truncated Gaussian spectral gain curves Re [ g ( ω s ) ] . (b) Corresponding spectral phase responses Im [ g ( ω s ) ] calculated using the Kramers–Kronig relations [24].

Fig. 6
Fig. 6

Comparison between the measured eye diagrams of delayed 2.5 Gigabit / s pseudorandom data signals: (a) pump PSD broadened using an optimized low-rate deterministic current modulation; (b) pump PSD broadened using an optimized high-rate noise current modulation. [54].

Fig. 7
Fig. 7

(a) Delayed signal pulses and (b) slow light delay as a function of pump power in a 2 m long tellurite glass fiber [31]. © 2008 IET

Fig. 8
Fig. 8

SBS slow light delay of a 1 GHz wide LFM radar waveform as a function of SBS power gain in a 3.5 km long highly nonlinear silica fiber. The pump power level was varied between 16 and 21 dBm . Asterisks denote the delay of LFM waveforms; pulse signs indicate the predicted delay based on a measurement of the SBS complex response using a vector network analyzer [33]. © 2007 IEEE

Fig. 9
Fig. 9

Measured phase response of SBS-based slow light delay line with separated tuning of the signal carrier frequency [36].

Fig. 10
Fig. 10

Measured, normalized signal power as a function of time. Dashed curve, input Gaussian pulse (FWHM 17 ns ); solid curves, output pulses with input SOP aligned for minimum gain (left, green) and maximum gain (right, red); dash–dot curves (black), examples of output pulses with intermediate input polarization alignments. Fiber length was 140 m and pump power was 560 mW [38].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A s ( L ) = A s ( 0 ) exp [ g ( ω s ) L eff ] e α L / 2 .
g ( ω s ) = 1 2 g 0 | A p | 2 1 j 2 ( ω p ω s Ω B ) / Γ B .
τ = g 0 | A p | 2 L eff Γ B .
Im [ g ( ω s ) ] = 2 π 0 ω Re [ g ( ω ) ] ω 2 ω s 2 d ω .
g ( ω s ) = 1 2 g 0 | A p ( ω p ) | 2 1 j 2 ( ω p ω s Ω B ) / Γ B d ω p ,
ϕ ( ω s = ω c + Ω RF Carrier ) ϕ ( ω s = ω c ) = Ω RF Carrier · ϕ ( ω s ) ω s | ω s = ω c = Ω RF Carrier · τ ,
E sig in = α 0 E sig in _ max + β 0 E sig in _ min ,
E sig out = α 0 G max E sig out _ max + β 0 G min E sig out _ min .

Metrics