Abstract

Zinc oxide is a wide-bandgap semiconductor material, which can be grown as a single crystal and also as a thin film. A gold nanowire with zinc oxide cladding can serve as a waveguide, which can combine the plasmonic features of a metal nanowire with the sensing properties of ZnO. Using an H-field-based fully vectorial finite element method, rigorous modal solutions for the characteristics of a gold nanowire core with zinc oxide cladding are obtained. The modal properties, including the effective index, spot size, confinement factor, and modal hybridness have been analyzed to determine the fundamental plasmonic mode of this waveguide.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
    [Crossref]
  2. S. Maier, Plasmonic Fundamentals and Applications(Springer, 2007).
  3. P. Chen, S. Mwakwari, and A. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl. 1, 45–66 (2008).
  4. L. Qiu, T. A. Larson, E. Vitkin, L. Guo, E. B. Hanlon, I. Itzkan, K. V. Sokolov, and L. T. Perelman, “Gold nanorod light scattering labels for biomedical imaging,” Biomed. Opt. Express 1, 135–142 (2010).
    [Crossref]
  5. H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15, 7132–7139 (2007).
    [Crossref] [PubMed]
  6. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [Crossref]
  7. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962).
    [Crossref]
  8. D. D. Lee and D. S. Lee, “Environmental gas sensors,” IEEE Sens. J. 1, 214–224 (2001).
    [Crossref]
  9. A. Janotti and C. de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72, 126501 (2009).
    [Crossref]
  10. C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, 2006).
  11. A. Janotti and C. de Walle, “Hydrogen multicenter bonds,” Nature 6, 44–47 (2007).
    [Crossref]
  12. X. A. J. Wang and Q. Li, “Size-dependent electronic structures of ZnO nanowires,” Appl. Phys. Lett. 86, 201911 (2005).
    [Crossref]
  13. V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
    [Crossref]
  14. G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors 10, 5469–5502 (2010).
    [Crossref] [PubMed]
  15. S. W. Fana, A. K. Srivastavaa, and V. P. Dravid, “Nanopatterned polycrystalline ZnO for room temperature gas sensing,” Sens. Actuators B 144, 159–163 (2010).
    [Crossref]
  16. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. 2, 682–688 (1984).
    [Crossref]
  17. K. Saitoh and M. Koshiba, “Full vectorial finite element beam propagation with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405–413 (2001).
    [Crossref]
  18. P. G. Etchegoin, E. Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705(2006).
    [Crossref] [PubMed]
  19. P. G. Etchegoin, E. Ru, and M. Meyer, “Erratum: an analytic model for the optical properties of gold,” J. Chem. Phys. 127, 189901 (2007).
    [Crossref]
  20. J. A. Gordon and R. W. Ziolkowski, “The design and stimulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007).
    [Crossref] [PubMed]
  21. T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
    [Crossref]
  22. G. E. Jellison, Jr., and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998).
    [Crossref]
  23. G. E. Jellison, Jr., “Erratum: optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 65, 049902 (2001).
    [Crossref]
  24. S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18, 3556–3567 (2010).
    [Crossref] [PubMed]
  25. A. Yariv, Quantum Electronics (Wiley, 1989).
  26. N. Kejalakshmy, A. Agrawal, Y. Aden, D. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Characterization of silicon nanowire by use of the full-vectorial finite element method,” Appl. Opt. 49, 3173–3181 (2010).
    [Crossref] [PubMed]
  27. International Organization for Standardization, “Lasers and laser-related equipment—test methods for laser beam widths, divergence and beam propagation ratios,” ISO 11146 (International Organization for Standardization, 2005).
  28. E. D. Finlayson, J. M. Heaton, B. M. A. Rahman, and S. S. A. Obayya, “Polarization conversion in passive deep-etched GaAs/AlGaAs waveguides,” J. Lightwave Technol. 24, 1425–1432 (2006).
    [Crossref]

2010 (5)

2009 (1)

A. Janotti and C. de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72, 126501 (2009).
[Crossref]

2008 (1)

P. Chen, S. Mwakwari, and A. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl. 1, 45–66 (2008).

2007 (5)

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[Crossref]

P. G. Etchegoin, E. Ru, and M. Meyer, “Erratum: an analytic model for the optical properties of gold,” J. Chem. Phys. 127, 189901 (2007).
[Crossref]

J. A. Gordon and R. W. Ziolkowski, “The design and stimulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007).
[Crossref] [PubMed]

A. Janotti and C. de Walle, “Hydrogen multicenter bonds,” Nature 6, 44–47 (2007).
[Crossref]

H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15, 7132–7139 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

X. A. J. Wang and Q. Li, “Size-dependent electronic structures of ZnO nanowires,” Appl. Phys. Lett. 86, 201911 (2005).
[Crossref]

2003 (1)

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

2001 (3)

D. D. Lee and D. S. Lee, “Environmental gas sensors,” IEEE Sens. J. 1, 214–224 (2001).
[Crossref]

K. Saitoh and M. Koshiba, “Full vectorial finite element beam propagation with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405–413 (2001).
[Crossref]

G. E. Jellison, Jr., “Erratum: optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 65, 049902 (2001).
[Crossref]

1998 (2)

G. E. Jellison, Jr., and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

1997 (1)

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

1984 (1)

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

1962 (1)

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962).
[Crossref]

Aden, Y.

Afonja, A.

G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors 10, 5469–5502 (2010).
[Crossref] [PubMed]

Agrawal, A.

Albaladejo, S.

Armelles, G.

Aussenegg, F. R.

Binions, R.

G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors 10, 5469–5502 (2010).
[Crossref] [PubMed]

Boatner, L. A.

G. E. Jellison, Jr., and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998).
[Crossref]

Carminati, R.

Cavanagh, L. M.

G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors 10, 5469–5502 (2010).
[Crossref] [PubMed]

Chan, W. K.

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

Chang, H. C.

Chen, H. M.

Chen, P.

P. Chen, S. Mwakwari, and A. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl. 1, 45–66 (2008).

Chiu, K. P.

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

de Walle, C.

A. Janotti and C. de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72, 126501 (2009).
[Crossref]

A. Janotti and C. de Walle, “Hydrogen multicenter bonds,” Nature 6, 44–47 (2007).
[Crossref]

Djurisic, A. B.

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

Dravid, V. P.

S. W. Fana, A. K. Srivastavaa, and V. P. Dravid, “Nanopatterned polycrystalline ZnO for room temperature gas sensing,” Sens. Actuators B 144, 159–163 (2010).
[Crossref]

Etchegoin, P. G.

P. G. Etchegoin, E. Ru, and M. Meyer, “Erratum: an analytic model for the optical properties of gold,” J. Chem. Phys. 127, 189901 (2007).
[Crossref]

P. G. Etchegoin, E. Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705(2006).
[Crossref] [PubMed]

Fana, S. W.

S. W. Fana, A. K. Srivastavaa, and V. P. Dravid, “Nanopatterned polycrystalline ZnO for room temperature gas sensing,” Sens. Actuators B 144, 159–163 (2010).
[Crossref]

Fine, G. F.

G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors 10, 5469–5502 (2010).
[Crossref] [PubMed]

Finlayson, E. D.

Freeouf, J. L.

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

Froufe-Pérez, L. S.

Fujiishi, K.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962).
[Crossref]

Gao, J.

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

García-Martín, A.

Gómez-Medina, R.

Gordon, J. A.

Grattan, K. T. V.

Guo, L.

Halas, N.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[Crossref]

Hanlon, E. B.

Heaton, J. M.

Holden, T.

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

Huang, H. J.

Itzkan, I.

Jagadish, C.

C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, 2006).

Janotti, A.

A. Janotti and C. de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72, 126501 (2009).
[Crossref]

A. Janotti and C. de Walle, “Hydrogen multicenter bonds,” Nature 6, 44–47 (2007).
[Crossref]

Jellison, G. E.

G. E. Jellison, Jr., “Erratum: optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 65, 049902 (2001).
[Crossref]

G. E. Jellison, Jr., and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998).
[Crossref]

Kato, A.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962).
[Crossref]

Kejalakshmy, N.

Koshiba, M.

Krenn, J. R.

Lal, S.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[Crossref]

Larson, T. A.

Lee, D. D.

D. D. Lee and D. S. Lee, “Environmental gas sensors,” IEEE Sens. J. 1, 214–224 (2001).
[Crossref]

Lee, D. S.

D. D. Lee and D. S. Lee, “Environmental gas sensors,” IEEE Sens. J. 1, 214–224 (2001).
[Crossref]

Leitner, A.

Leung, D.

Li, Q.

X. A. J. Wang and Q. Li, “Size-dependent electronic structures of ZnO nanowires,” Appl. Phys. Lett. 86, 201911 (2005).
[Crossref]

Link, S.

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[Crossref]

Liu, R. S.

Lui, H. F.

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

Maier, S.

S. Maier, Plasmonic Fundamentals and Applications(Springer, 2007).

Marinchio, H.

Meyer, M.

P. G. Etchegoin, E. Ru, and M. Meyer, “Erratum: an analytic model for the optical properties of gold,” J. Chem. Phys. 127, 189901 (2007).
[Crossref]

P. G. Etchegoin, E. Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705(2006).
[Crossref] [PubMed]

Mwakwari, S.

P. Chen, S. Mwakwari, and A. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl. 1, 45–66 (2008).

Nagatani, M.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962).
[Crossref]

Obayya, S. S. A.

Oyelere, A.

P. Chen, S. Mwakwari, and A. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl. 1, 45–66 (2008).

Pearton, S. J.

C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, 2006).

Perelman, L. T.

Pollak, F. H.

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

Qiu, L.

Quinten, M.

Rahman, B. M. A.

Ram, P.

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

Roy, V. A. L.

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

Ru, E.

P. G. Etchegoin, E. Ru, and M. Meyer, “Erratum: an analytic model for the optical properties of gold,” J. Chem. Phys. 127, 189901 (2007).
[Crossref]

P. G. Etchegoin, E. Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705(2006).
[Crossref] [PubMed]

Sáenz, J. J.

Saitoh, K.

Seiyama, T.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962).
[Crossref]

Sokolov, K. V.

Srivastavaa, A. K.

S. W. Fana, A. K. Srivastavaa, and V. P. Dravid, “Nanopatterned polycrystalline ZnO for room temperature gas sensing,” Sens. Actuators B 144, 159–163 (2010).
[Crossref]

Standardization, International Organization for

International Organization for Standardization, “Lasers and laser-related equipment—test methods for laser beam widths, divergence and beam propagation ratios,” ISO 11146 (International Organization for Standardization, 2005).

Surya, C.

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

Tamargo, M. C.

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

Torrado, J. F.

Tsai, D. P.

Vitkin, E.

Wang, X. A. J.

X. A. J. Wang and Q. Li, “Size-dependent electronic structures of ZnO nanowires,” Appl. Phys. Lett. 86, 201911 (2005).
[Crossref]

Yang, B. X.

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1989).

Yu, C. P.

Ziolkowski, R. W.

Anal. Chem. (1)

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. A. J. Wang and Q. Li, “Size-dependent electronic structures of ZnO nanowires,” Appl. Phys. Lett. 86, 201911 (2005).
[Crossref]

V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003).
[Crossref]

Biomed. Opt. Express (1)

IEEE Sens. J. (1)

D. D. Lee and D. S. Lee, “Environmental gas sensors,” IEEE Sens. J. 1, 214–224 (2001).
[Crossref]

J. Chem. Phys. (2)

P. G. Etchegoin, E. Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705(2006).
[Crossref] [PubMed]

P. G. Etchegoin, E. Ru, and M. Meyer, “Erratum: an analytic model for the optical properties of gold,” J. Chem. Phys. 127, 189901 (2007).
[Crossref]

J. Lightwave Technol. (3)

Nanotechnol. Sci. Appl. (1)

P. Chen, S. Mwakwari, and A. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl. 1, 45–66 (2008).

Nat. Photon. (1)

S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007).
[Crossref]

Nature (1)

A. Janotti and C. de Walle, “Hydrogen multicenter bonds,” Nature 6, 44–47 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997).
[Crossref]

G. E. Jellison, Jr., and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998).
[Crossref]

G. E. Jellison, Jr., “Erratum: optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 65, 049902 (2001).
[Crossref]

Rep. Prog. Phys. (1)

A. Janotti and C. de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72, 126501 (2009).
[Crossref]

Sens. Actuators B (1)

S. W. Fana, A. K. Srivastavaa, and V. P. Dravid, “Nanopatterned polycrystalline ZnO for room temperature gas sensing,” Sens. Actuators B 144, 159–163 (2010).
[Crossref]

Sensors (1)

G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors 10, 5469–5502 (2010).
[Crossref] [PubMed]

Other (4)

C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, 2006).

S. Maier, Plasmonic Fundamentals and Applications(Springer, 2007).

International Organization for Standardization, “Lasers and laser-related equipment—test methods for laser beam widths, divergence and beam propagation ratios,” ISO 11146 (International Organization for Standardization, 2005).

A. Yariv, Quantum Electronics (Wiley, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the Au nanowire in zinc oxide cladding waveguide.

Fig. 2
Fig. 2

Wavelength dependent variation of complex refractive index of a gold nanowire.

Fig. 3
Fig. 3

Variation of effective index with wavelengths at two different radii ( r = 50 and 75 nm ).

Fig. 4
Fig. 4

Comparison of effective index of gold nanowire ( r = 50 nm ) with refractive index of Au and ZnO.

Fig. 5
Fig. 5

Polarizability of the embedded gold nanowire cylinder of unit cross-sectional area.

Fig. 6
Fig. 6

Variation of H field along the x and y axes at λ = 0.45 μm .

Fig. 7
Fig. 7

Power distribution in a nanowire ( r = 50 nm ) at λ = 0.45 μm .

Fig. 8
Fig. 8

H-field distribution in a nanowire at λ = 0.56 μm .

Fig. 9
Fig. 9

H x -field profile of the SP mode at λ = 0.70 μm .

Fig. 10
Fig. 10

Contour plot of H x field of H 11 x the surface plasmon mode at r = 50 nm .

Fig. 11
Fig. 11

Variation of the power confinement (%) with respect to the wavelength for two different radii r = 75 and 50 nm .

Fig. 12
Fig. 12

Variation of the loss with respect to the wavelength for two different radii r = 75 and 50 nm .

Fig. 13
Fig. 13

Variation of the effective area with respect to the wavelength for two different radii r = 75 and 50 nm .

Fig. 14
Fig. 14

Variation of the hybridness with respect to the wavelength for r = 50 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α x = 2 × A × ϵ m r + j ϵ m i ϵ d ϵ m r + j ϵ m i + ϵ d ,
α z = 2 × A × ϵ m r + j ϵ m i ϵ d 1 .

Metrics