Abstract

A design for an all-optical temperature insensitive fiber Bragg grating (FBG) based tilt sensor is reported. The sensor is capable of measuring the magnitude as well as the direction of inclination from the horizontal with a complete reversible response over the designed dynamic range of ±45°. The most important feature of the reported sensor is its inherent enhanced tuning capability for its sensitivity. An excellent sensitivity of the order of 0.0626nm/° that can further be tuned is observed for the sensor. Experimental results show that a tilt angle resolution better than 0.008° with a tilt accuracy of ±0.36° was achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  2. J. Yang, Y. Zhao, B. J. Peng, and X. Wan X, “Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method,” Sens. Actuators A, Phys. 118, 254–258 (2005).
    [CrossRef]
  3. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
    [CrossRef]
  4. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
    [CrossRef]
  5. X. G. Tian and X. M. Tao, “Torsion measurement using fiber Bragg grating sensors,” Appl. Opt. 41, 248–253 (2001).
  6. J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
    [CrossRef]
  7. X. Y. Fang and M. S. Cao, “Theoretical analysis of 2D laser angle sensor and several design parameters,” Opt. Laser Technol. 34, 225–229 (2002).
    [CrossRef]
  8. B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16, 224–226 (2004).
    [CrossRef]
  9. X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
    [CrossRef]
  10. H. J. Chen, L. Wang, and W. F. Liu, “Temperature-insensitive fiber Bragg grating tilt sensor,” Appl. Opt. 47, 556–560(2008).
    [CrossRef] [PubMed]
  11. H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
    [CrossRef]
  12. S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
    [CrossRef]
  13. K. Ni, X. Dong, Y. Jin, and H. Xu, “Temperature-independent fiber Bragg gratings tilt sensor,” Microw. Opt. Technol. Lett. 52, 2250–2252 (2010).
    [CrossRef]
  14. H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive Fiber Bragg gratings based tilt sensor with large dynamic range,” J. Lightwave Technol. 29, 1714–1720 (2011).
    [CrossRef]

2011 (1)

2010 (3)

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

K. Ni, X. Dong, Y. Jin, and H. Xu, “Temperature-independent fiber Bragg gratings tilt sensor,” Microw. Opt. Technol. Lett. 52, 2250–2252 (2010).
[CrossRef]

2008 (1)

2005 (2)

J. Yang, Y. Zhao, B. J. Peng, and X. Wan X, “Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method,” Sens. Actuators A, Phys. 118, 254–258 (2005).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
[CrossRef]

2004 (1)

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16, 224–226 (2004).
[CrossRef]

2002 (1)

X. Y. Fang and M. S. Cao, “Theoretical analysis of 2D laser angle sensor and several design parameters,” Opt. Laser Technol. 34, 225–229 (2002).
[CrossRef]

2001 (2)

X. G. Tian and X. M. Tao, “Torsion measurement using fiber Bragg grating sensors,” Appl. Opt. 41, 248–253 (2001).

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

1998 (1)

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1996 (1)

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

Althouse, B. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Au, H. Y.

Bao, H.

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

Berkoff, T. A.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

Cao, M. S.

X. Y. Fang and M. S. Cao, “Theoretical analysis of 2D laser angle sensor and several design parameters,” Opt. Laser Technol. 34, 225–229 (2002).
[CrossRef]

Chan, C. C.

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
[CrossRef]

Chen, H. J.

Chung, W. H.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Dong, X.

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

K. Ni, X. Dong, Y. Jin, and H. Xu, “Temperature-independent fiber Bragg gratings tilt sensor,” Microw. Opt. Technol. Lett. 52, 2250–2252 (2010).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
[CrossRef]

Fang, X. Y.

X. Y. Fang and M. S. Cao, “Theoretical analysis of 2D laser angle sensor and several design parameters,” Opt. Laser Technol. 34, 225–229 (2002).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Fu, H. Y.

Guan, B. O.

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16, 224–226 (2004).
[CrossRef]

He, S.

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

Hu, K.

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
[CrossRef]

Jackson, P. R.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Jin, Y.

K. Ni, X. Dong, Y. Jin, and H. Xu, “Temperature-independent fiber Bragg gratings tilt sensor,” Microw. Opt. Technol. Lett. 52, 2250–2252 (2010).
[CrossRef]

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

Johnson, G. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Jones, B. E.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

Khijwania, S. K.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lim, J.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Liu, S. Y.

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16, 224–226 (2004).
[CrossRef]

Liu, W. F.

Ni, K.

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

K. Ni, X. Dong, Y. Jin, and H. Xu, “Temperature-independent fiber Bragg gratings tilt sensor,” Microw. Opt. Technol. Lett. 52, 2250–2252 (2010).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Peng, B. J.

J. Yang, Y. Zhao, B. J. Peng, and X. Wan X, “Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method,” Sens. Actuators A, Phys. 118, 254–258 (2005).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Shao, L.

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

Shum, P.

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
[CrossRef]

Shun, P.

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

Tam, H. Y.

Tao, X. M.

X. G. Tian and X. M. Tao, “Torsion measurement using fiber Bragg grating sensors,” Appl. Opt. 41, 248–253 (2001).

Tian, X. G.

X. G. Tian and X. M. Tao, “Torsion measurement using fiber Bragg grating sensors,” Appl. Opt. 41, 248–253 (2001).

Todd, M. D.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Vohra, S. T.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

Wan, X.

J. Yang, Y. Zhao, B. J. Peng, and X. Wan X, “Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method,” Sens. Actuators A, Phys. 118, 254–258 (2005).
[CrossRef]

Wang, L.

Xu, H.

K. Ni, X. Dong, Y. Jin, and H. Xu, “Temperature-independent fiber Bragg gratings tilt sensor,” Microw. Opt. Technol. Lett. 52, 2250–2252 (2010).
[CrossRef]

Yang, J.

J. Yang, Y. Zhao, B. J. Peng, and X. Wan X, “Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method,” Sens. Actuators A, Phys. 118, 254–258 (2005).
[CrossRef]

Yang, Q. P.

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

Zhan, C.

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
[CrossRef]

Zhao, C.

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

Zhao, Y.

J. Yang, Y. Zhao, B. J. Peng, and X. Wan X, “Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method,” Sens. Actuators A, Phys. 118, 254–258 (2005).
[CrossRef]

Appl. Opt. (2)

X. G. Tian and X. M. Tao, “Torsion measurement using fiber Bragg grating sensors,” Appl. Opt. 41, 248–253 (2001).

H. J. Chen, L. Wang, and W. F. Liu, “Temperature-insensitive fiber Bragg grating tilt sensor,” Appl. Opt. 47, 556–560(2008).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (4)

B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photon. Technol. Lett. 16, 224–226 (2004).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, “Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 2394–2396 (2005).
[CrossRef]

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[CrossRef]

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Bragg grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive Fiber Bragg gratings based tilt sensor with large dynamic range,” J. Lightwave Technol. 29, 1714–1720 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

S. He, X. Dong, K. Ni, Y. Jin, C. C. Chan, and P. Shum, “Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings,” Meas. Sci. Technol. 21, 025203 (2010).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

K. Ni, X. Dong, Y. Jin, and H. Xu, “Temperature-independent fiber Bragg gratings tilt sensor,” Microw. Opt. Technol. Lett. 52, 2250–2252 (2010).
[CrossRef]

Opt. Commun. (1)

H. Bao, X. Dong, C. Zhao, L. Shao, C. C. Chan, and P. Shun, “Temperature-insensitive FBG tilt sensor with a large dynamic range,” Opt. Commun. 283, 968–970 (2010).
[CrossRef]

Opt. Laser Technol. (1)

X. Y. Fang and M. S. Cao, “Theoretical analysis of 2D laser angle sensor and several design parameters,” Opt. Laser Technol. 34, 225–229 (2002).
[CrossRef]

Sens. Actuators A, Phys. (2)

J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “DP flow sensor using optical fiber Bragg grating,” Sens. Actuators A, Phys. 92, 102–108 (2001).
[CrossRef]

J. Yang, Y. Zhao, B. J. Peng, and X. Wan X, “Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method,” Sens. Actuators A, Phys. 118, 254–258 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of prestraining FBGs using STU.

Fig. 2
Fig. 2

(a) Part A of STU; (b) part B of STU with two side image.

Fig. 3
Fig. 3

Linear motion of part A of STU against part B using M2 screw.

Fig. 4
Fig. 4

Top plate with STUs fixed on it.

Fig. 5
Fig. 5

Proposed FBG based tilt sensor.

Fig. 6
Fig. 6

Experimentally observed sensor responses with two different masses.

Tables (1)

Tables Icon

Table 1 Comparison of the Sensor Response

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ( λ 2 λ 1 ) = ( 1 P e ) m g λ 1 sin ϕ A E cos θ ,
Δ ( λ 4 λ 3 ) = 0.
Δ ( λ 4 λ 3 ) = ( 1 P e ) m g λ 3 sin ϕ A E cos θ ,
Δ ( λ 2 λ 1 ) = 0.

Metrics