Abstract

This paper presents a high-sensitivity oxygen sensor that comprises an optical fiber coated at one end with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) and porous silica nanoparticles embedded in an n-octyltriethoxysilane (Octyl-triEOS)/tetraethylorthosilane (TEOS) composite xerogel. The sensitivity of the optical oxygen sensor is quantified in terms of the ratio IN2/IO2, where IN2 and IO2 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental results show that the oxygen sensor has a sensitivity of 26. The response time was 2s when switching from pure nitrogen to pure oxygen, and 7.7s when switching in the reverse direction. The experimental results show that compared to an oxygen sensor based on Ru(II) complex immobilized in the solgel matrix, the proposed optical fiber oxygen sensor has higher sensitivity. In addition to the increased surface area per unit mass of the sensing surface, the porous silica nano particles increase the sensitivity because a substantial number of aerial oxygen molecules penetrate the porous silica shell. The proposed optical sensor has the advantages of easy fabrication, low cost, fast response, and high sensitivity for oxygen monitoring using a cheap LED as a light source.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Clark, Jr., “Monitor and control of blood and tissue oxygen tensions,” Trans. Am. Soc. Artif. Intern. Organs 2, 41–48 (1956).
  2. D. B. Papkovsky, “New oxygen sensors and their application to biosensing,” Sens. Actuators B 29, 213–218 (1995).
    [CrossRef]
  3. J. N. Demas, B. A. Degraff, and P. B. Coleman, “Oxygen sensors based on luminescence quenching,” Anal. Chem. 71, 793A–800A (1999).
    [CrossRef] [PubMed]
  4. K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron. 18, 1439–1445(2003).
    [CrossRef] [PubMed]
  5. E. Vander Donckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B 32, 121–127 (1996).
    [CrossRef]
  6. S. K. Lee and I. Okura, “Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene,” Anal. Commun. 34, 185–188(1997).
    [CrossRef]
  7. A. N. Watkins, B. R. Wenner, J. D. Jordan, W. Y. Xu, J. N. Demas, and F. V. Bright, “Portable, low-cost, solid-state luminescence-based O2 sensor,” Appl. Spectrosc. 52, 750–754(1998).
    [CrossRef]
  8. Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem. 75, 2407–2413(2003).
    [CrossRef] [PubMed]
  9. R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77, 2670–2672 (2005).
    [CrossRef] [PubMed]
  10. S. K. Lee and I. Okura, “Porphyrin-doped sol-gel glass as probe for oxygen sensing,” Anal. Chim. Acta 342, 181–188(1997).
    [CrossRef]
  11. T. S. Yeh, C. S. Chu, and Y. L. Lo, “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sens. Actuators B 119, 701–707 (2006).
    [CrossRef]
  12. C. S. Chu and Y. L. Lo, “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators B 124, 376–382 (2007).
    [CrossRef]
  13. C. McDonagh, B. D. MacCraith, and A. K. McEcoy, “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem. 70, 45–50 (1998).
    [CrossRef] [PubMed]
  14. B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
    [CrossRef]
  15. X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
    [CrossRef]
  16. Y. D. Yin, Y. Lu, Y. G. Sun, and Y. N. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2, 427–430 (2002).
    [CrossRef]
  17. T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
    [CrossRef]
  18. L. Wang, W. J. Zhao, and W. H. Tan, “Bioconjugated silica nanoparticles: development and applications,” Nano Res. 1, 99–115 (2008).
    [CrossRef]
  19. T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
    [CrossRef]
  20. Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, “Permeable silica shell through surface-protected etching,” Nano Lett. 8, 2867–2871 (2008).
    [CrossRef] [PubMed]
  21. B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
    [CrossRef]
  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Springer, 1999), Chaps. 8 and 9.
  23. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
    [CrossRef]
  24. C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators B 143, 205–210 (2009).
    [CrossRef]
  25. B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
    [CrossRef]
  26. N. Optiz and D. W. Lübbers, “Kinetics and transient times of fluorescence optical sensors (optodes) for blood gas analysis (O2, CO2, pH),” Adv. Exp. Med. Biol. 215, 45–50(1987).
  27. Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem. 78, 1939–1945 (2006).
    [CrossRef] [PubMed]
  28. Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
    [CrossRef]

2010 (1)

Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
[CrossRef]

2009 (2)

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators B 143, 205–210 (2009).
[CrossRef]

2008 (3)

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

L. Wang, W. J. Zhao, and W. H. Tan, “Bioconjugated silica nanoparticles: development and applications,” Nano Res. 1, 99–115 (2008).
[CrossRef]

Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, “Permeable silica shell through surface-protected etching,” Nano Lett. 8, 2867–2871 (2008).
[CrossRef] [PubMed]

2007 (1)

C. S. Chu and Y. L. Lo, “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators B 124, 376–382 (2007).
[CrossRef]

2006 (3)

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

T. S. Yeh, C. S. Chu, and Y. L. Lo, “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sens. Actuators B 119, 701–707 (2006).
[CrossRef]

Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem. 78, 1939–1945 (2006).
[CrossRef] [PubMed]

2005 (3)

R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77, 2670–2672 (2005).
[CrossRef] [PubMed]

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

2003 (2)

Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem. 75, 2407–2413(2003).
[CrossRef] [PubMed]

K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron. 18, 1439–1445(2003).
[CrossRef] [PubMed]

2002 (2)

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Y. D. Yin, Y. Lu, Y. G. Sun, and Y. N. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2, 427–430 (2002).
[CrossRef]

1999 (1)

J. N. Demas, B. A. Degraff, and P. B. Coleman, “Oxygen sensors based on luminescence quenching,” Anal. Chem. 71, 793A–800A (1999).
[CrossRef] [PubMed]

1998 (2)

A. N. Watkins, B. R. Wenner, J. D. Jordan, W. Y. Xu, J. N. Demas, and F. V. Bright, “Portable, low-cost, solid-state luminescence-based O2 sensor,” Appl. Spectrosc. 52, 750–754(1998).
[CrossRef]

C. McDonagh, B. D. MacCraith, and A. K. McEcoy, “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem. 70, 45–50 (1998).
[CrossRef] [PubMed]

1997 (2)

S. K. Lee and I. Okura, “Porphyrin-doped sol-gel glass as probe for oxygen sensing,” Anal. Chim. Acta 342, 181–188(1997).
[CrossRef]

S. K. Lee and I. Okura, “Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene,” Anal. Commun. 34, 185–188(1997).
[CrossRef]

1996 (1)

E. Vander Donckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B 32, 121–127 (1996).
[CrossRef]

1995 (1)

D. B. Papkovsky, “New oxygen sensors and their application to biosensing,” Sens. Actuators B 29, 213–218 (1995).
[CrossRef]

1987 (1)

N. Optiz and D. W. Lübbers, “Kinetics and transient times of fluorescence optical sensors (optodes) for blood gas analysis (O2, CO2, pH),” Adv. Exp. Med. Biol. 215, 45–50(1987).

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

1956 (1)

L. C. Clark, Jr., “Monitor and control of blood and tissue oxygen tensions,” Trans. Am. Soc. Artif. Intern. Organs 2, 41–48 (1956).

Aloni, S.

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Bright, F. V.

Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem. 78, 1939–1945 (2006).
[CrossRef] [PubMed]

R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77, 2670–2672 (2005).
[CrossRef] [PubMed]

Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem. 75, 2407–2413(2003).
[CrossRef] [PubMed]

A. N. Watkins, B. R. Wenner, J. D. Jordan, W. Y. Xu, J. N. Demas, and F. V. Bright, “Portable, low-cost, solid-state luminescence-based O2 sensor,” Appl. Spectrosc. 52, 750–754(1998).
[CrossRef]

Bukowski, R. M.

R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77, 2670–2672 (2005).
[CrossRef] [PubMed]

Camerman, B.

E. Vander Donckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B 32, 121–127 (1996).
[CrossRef]

Chang, C.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Chen, S. H.

Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
[CrossRef]

Chu, C. S.

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators B 143, 205–210 (2009).
[CrossRef]

C. S. Chu and Y. L. Lo, “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators B 124, 376–382 (2007).
[CrossRef]

T. S. Yeh, C. S. Chu, and Y. L. Lo, “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sens. Actuators B 119, 701–707 (2006).
[CrossRef]

Ciriminna, R.

R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77, 2670–2672 (2005).
[CrossRef] [PubMed]

Clark, L. C.

L. C. Clark, Jr., “Monitor and control of blood and tissue oxygen tensions,” Trans. Am. Soc. Artif. Intern. Organs 2, 41–48 (1956).

Coleman, P. B.

J. N. Demas, B. A. Degraff, and P. B. Coleman, “Oxygen sensors based on luminescence quenching,” Anal. Chem. 71, 793A–800A (1999).
[CrossRef] [PubMed]

Degraff, B. A.

J. N. Demas, B. A. Degraff, and P. B. Coleman, “Oxygen sensors based on luminescence quenching,” Anal. Chem. 71, 793A–800A (1999).
[CrossRef] [PubMed]

Demas, J. N.

Drew, C.

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Ge, J.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Ge, J. P.

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, “Permeable silica shell through surface-protected etching,” Nano Lett. 8, 2867–2871 (2008).
[CrossRef] [PubMed]

Goebl, J.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Guan, Y. F.

Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
[CrossRef]

Guo, J.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Han, B. H.

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

Hase, K.

K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron. 18, 1439–1445(2003).
[CrossRef] [PubMed]

Herne, R.

E. Vander Donckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B 32, 121–127 (1996).
[CrossRef]

Hu, Y. X.

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

Jordan, J. D.

Kumar, J.

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Springer, 1999), Chaps. 8 and 9.

Lee, S. H.

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Lee, S. K.

S. K. Lee and I. Okura, “Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene,” Anal. Commun. 34, 185–188(1997).
[CrossRef]

S. K. Lee and I. Okura, “Porphyrin-doped sol-gel glass as probe for oxygen sensing,” Anal. Chim. Acta 342, 181–188(1997).
[CrossRef]

Lei, B. F.

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Li, B.

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Li, W. L.

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Liu, Y. S.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Lo, Y. L.

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators B 143, 205–210 (2009).
[CrossRef]

C. S. Chu and Y. L. Lo, “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators B 124, 376–382 (2007).
[CrossRef]

T. S. Yeh, C. S. Chu, and Y. L. Lo, “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sens. Actuators B 119, 701–707 (2006).
[CrossRef]

Lu, S. Z.

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Lu, Y.

Y. D. Yin, Y. Lu, Y. G. Sun, and Y. N. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2, 427–430 (2002).
[CrossRef]

Lübbers, D. W.

N. Optiz and D. W. Lübbers, “Kinetics and transient times of fluorescence optical sensors (optodes) for blood gas analysis (O2, CO2, pH),” Adv. Exp. Med. Biol. 215, 45–50(1987).

MacCraith, B. D.

C. McDonagh, B. D. MacCraith, and A. K. McEcoy, “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem. 70, 45–50 (1998).
[CrossRef] [PubMed]

Manners, I.

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

McDonagh, C.

C. McDonagh, B. D. MacCraith, and A. K. McEcoy, “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem. 70, 45–50 (1998).
[CrossRef] [PubMed]

McEcoy, A. K.

C. McDonagh, B. D. MacCraith, and A. K. McEcoy, “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem. 70, 45–50 (1998).
[CrossRef] [PubMed]

Minamitani, H.

K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron. 18, 1439–1445(2003).
[CrossRef] [PubMed]

Okura, I.

S. K. Lee and I. Okura, “Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene,” Anal. Commun. 34, 185–188(1997).
[CrossRef]

S. K. Lee and I. Okura, “Porphyrin-doped sol-gel glass as probe for oxygen sensing,” Anal. Chim. Acta 342, 181–188(1997).
[CrossRef]

Optiz, N.

N. Optiz and D. W. Lübbers, “Kinetics and transient times of fluorescence optical sensors (optodes) for blood gas analysis (O2, CO2, pH),” Adv. Exp. Med. Biol. 215, 45–50(1987).

Pagliaro, M.

R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77, 2670–2672 (2005).
[CrossRef] [PubMed]

Papkovsky, D. B.

D. B. Papkovsky, “New oxygen sensors and their application to biosensing,” Sens. Actuators B 29, 213–218 (1995).
[CrossRef]

Peng, H.

Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
[CrossRef]

Sakai, S.

K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron. 18, 1439–1445(2003).
[CrossRef] [PubMed]

Samuelson, L. A.

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Senecal, K. J.

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

Sun, M.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Sun, Y. G.

Y. D. Yin, Y. Lu, Y. G. Sun, and Y. N. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2, 427–430 (2002).
[CrossRef]

Tan, W. H.

L. Wang, W. J. Zhao, and W. H. Tan, “Bioconjugated silica nanoparticles: development and applications,” Nano Res. 1, 99–115 (2008).
[CrossRef]

Tang, Y.

Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem. 78, 1939–1945 (2006).
[CrossRef] [PubMed]

Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem. 75, 2407–2413(2003).
[CrossRef] [PubMed]

Tao, Z.

Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem. 75, 2407–2413(2003).
[CrossRef] [PubMed]

Tao, Z. Y.

Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem. 78, 1939–1945 (2006).
[CrossRef] [PubMed]

Tehan, E. C.

Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem. 78, 1939–1945 (2006).
[CrossRef] [PubMed]

Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem. 75, 2407–2413(2003).
[CrossRef] [PubMed]

Tsukada, K.

K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron. 18, 1439–1445(2003).
[CrossRef] [PubMed]

Vandeloise, R.

E. Vander Donckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B 32, 121–127 (1996).
[CrossRef]

Vander Donckt, E.

E. Vander Donckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B 32, 121–127 (1996).
[CrossRef]

Wang, L.

L. Wang, W. J. Zhao, and W. H. Tan, “Bioconjugated silica nanoparticles: development and applications,” Nano Res. 1, 99–115 (2008).
[CrossRef]

Wang, X. Y.

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Wang, Y.

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Watkins, A. N.

Wenner, B. R.

Winnik, M. A.

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

Xia, Y. N.

Y. D. Yin, Y. Lu, Y. G. Sun, and Y. N. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2, 427–430 (2002).
[CrossRef]

Xiong, Y.

Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
[CrossRef]

Xu, W. Y.

Yan, Y.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Yeh, T. S.

T. S. Yeh, C. S. Chu, and Y. L. Lo, “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sens. Actuators B 119, 701–707 (2006).
[CrossRef]

Yin, Y.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Yin, Y. D.

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, “Permeable silica shell through surface-protected etching,” Nano Lett. 8, 2867–2871 (2008).
[CrossRef] [PubMed]

Y. D. Yin, Y. Lu, Y. G. Sun, and Y. N. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2, 427–430 (2002).
[CrossRef]

Zhang, H. R.

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Zhang, Q.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, “Permeable silica shell through surface-protected etching,” Nano Lett. 8, 2867–2871 (2008).
[CrossRef] [PubMed]

Zhang, T.

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Zhang, T. R.

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, “Permeable silica shell through surface-protected etching,” Nano Lett. 8, 2867–2871 (2008).
[CrossRef] [PubMed]

Zhao, W. J.

L. Wang, W. J. Zhao, and W. H. Tan, “Bioconjugated silica nanoparticles: development and applications,” Nano Res. 1, 99–115 (2008).
[CrossRef]

Zheng, Z. H.

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Zhu, D. Q.

Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
[CrossRef]

Adv. Exp. Med. Biol. (1)

N. Optiz and D. W. Lübbers, “Kinetics and transient times of fluorescence optical sensors (optodes) for blood gas analysis (O2, CO2, pH),” Adv. Exp. Med. Biol. 215, 45–50(1987).

Adv. Funct. Mater. (1)

B. F. Lei, B. Li, H. R. Zhang, S. Z. Lu, Z. H. Zheng, W. L. Li, and Y. Wang, “Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor,” Adv. Funct. Mater. 16, 1883–1891 (2006).
[CrossRef]

Anal. Chem. (5)

J. N. Demas, B. A. Degraff, and P. B. Coleman, “Oxygen sensors based on luminescence quenching,” Anal. Chem. 71, 793A–800A (1999).
[CrossRef] [PubMed]

Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem. 75, 2407–2413(2003).
[CrossRef] [PubMed]

R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem. 77, 2670–2672 (2005).
[CrossRef] [PubMed]

Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem. 78, 1939–1945 (2006).
[CrossRef] [PubMed]

C. McDonagh, B. D. MacCraith, and A. K. McEcoy, “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem. 70, 45–50 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

S. K. Lee and I. Okura, “Porphyrin-doped sol-gel glass as probe for oxygen sensing,” Anal. Chim. Acta 342, 181–188(1997).
[CrossRef]

Anal. Commun. (1)

S. K. Lee and I. Okura, “Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene,” Anal. Commun. 34, 185–188(1997).
[CrossRef]

Angew. Chem., Int. Ed. (1)

T. R. Zhang, J. P. Ge, Y. X. Hu, Q. Zhang, S. Aloni, and Y. D. Yin, “Formation of hollow silica colloids through a spontaneous dissolution-regrowth process,” Angew. Chem., Int. Ed. 47, 5806–5811 (2008).
[CrossRef]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron. 18, 1439–1445(2003).
[CrossRef] [PubMed]

Chem. Mater. (2)

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater. 17, 3160–3171 (2005).
[CrossRef]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[CrossRef]

J. Fluoresc. (1)

Y. Xiong, D. Q. Zhu, S. H. Chen, H. Peng, and Y. F. Guan, “A fiber optic evanescent wave O2 sensor based on Ru(II)-doped fluorinated ORMOSILs,” J. Fluoresc. 20, 269–274(2010).
[CrossRef]

J. Phys. Chem. C (1)

T. Zhang, Q. Zhang, J. Ge, J. Goebl, M. Sun, Y. Yan, Y. S. Liu, C. Chang, J. Guo, and Y. Yin, “A self-templated route to hollow silica microspheres,” J. Phys. Chem. C 113, 3168–3175(2009).
[CrossRef]

Nano Lett. (3)

Q. Zhang, T. R. Zhang, J. P. Ge, and Y. D. Yin, “Permeable silica shell through surface-protected etching,” Nano Lett. 8, 2867–2871 (2008).
[CrossRef] [PubMed]

X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett. 2, 1273–1275(2002).
[CrossRef]

Y. D. Yin, Y. Lu, Y. G. Sun, and Y. N. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,” Nano Lett. 2, 427–430 (2002).
[CrossRef]

Nano Res. (1)

L. Wang, W. J. Zhao, and W. H. Tan, “Bioconjugated silica nanoparticles: development and applications,” Nano Res. 1, 99–115 (2008).
[CrossRef]

Sens. Actuators B (5)

E. Vander Donckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B 32, 121–127 (1996).
[CrossRef]

D. B. Papkovsky, “New oxygen sensors and their application to biosensing,” Sens. Actuators B 29, 213–218 (1995).
[CrossRef]

T. S. Yeh, C. S. Chu, and Y. L. Lo, “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sens. Actuators B 119, 701–707 (2006).
[CrossRef]

C. S. Chu and Y. L. Lo, “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators B 124, 376–382 (2007).
[CrossRef]

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators B 143, 205–210 (2009).
[CrossRef]

Trans. Am. Soc. Artif. Intern. Organs (1)

L. C. Clark, Jr., “Monitor and control of blood and tissue oxygen tensions,” Trans. Am. Soc. Artif. Intern. Organs 2, 41–48 (1956).

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Springer, 1999), Chaps. 8 and 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TEM image showing silica nanoparticles at a resolution of 500 nm .

Fig. 2
Fig. 2

TEM image showing porous silica nanoparticles at a resolution of 100 nm .

Fig. 3
Fig. 3

(a) SEM and (b) OM images of Octyl-triEOS/TEOS composite xerogel film and (c) SEM image of Octyl-triEOS/TEOS/ porous silica nanoparticles composite xerogel film.

Fig. 4
Fig. 4

Schematic diagram showing experimental arrangement used for characterization. SMA Connector is the subminiature A connector.

Fig. 5
Fig. 5

Emission spectra of (a) Ru(II)-doped oxygen sensor and (b) Ru(II)-doped oxygen sensor with porous silica nanoparticles for different oxygen concentrations.

Fig. 6
Fig. 6

Stern–Volmer plots for Ru(II)-doped oxygen sensor and Ru(II)-doped oxygen sensor with porous silica nanoparticles.

Fig. 7
Fig. 7

Response characteristics of (a) Ru-doped oxygen sensor and (b) Ru-doped oxygen sensor with porous silica nanoparticles when switching alternately between 100% nitrogen and 100% oxygen.

Tables (1)

Tables Icon

Table 1 Comparison of Performance Characteristics of the Proposed Oxygen Sensor with Those of Existing Optical Oxygen Sensors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I 0 / I = 1 + K sv [ O 2 ] ,

Metrics