Abstract

A U-bent fiber-optic sensor based on the localized surface plasmon resonance (LSPR) of spherical silver nanoparticles has been studied. The redshift of the absorption maximum of the bound silver nanoparticles was observed due to the increment of nanoparticle density on the surface of the fiber. On the other hand, the blueshift was observed when the refractive index of the environment surrounding the nanoparticle was increased. These observations were analyzed in terms of a single nanoparticle theoretical framework. The departure from the spherical symmetry of the nanoparticle is attributed to the plasmonic coupling effect between the randomly distributed nanoparticles on the surface of the fiber core. This phenomenon can be cleverly exploited to develop different kinds of optical fiber sensors.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77, 338–346(2005).
    [CrossRef]
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [CrossRef]
  3. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
    [CrossRef] [PubMed]
  4. W. Hickel, D. Kamp, and W. Knoll, “Surface–plasmon microscopy,” Nature 339, 186 (1989).
    [CrossRef]
  5. J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
    [CrossRef] [PubMed]
  6. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
    [CrossRef] [PubMed]
  7. K. A. Willets and R. P. Van Duyne “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [CrossRef]
  8. J. Homola and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, 2006).
    [CrossRef]
  9. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15(1999).
    [CrossRef]
  10. V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
    [CrossRef]
  11. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  12. J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
    [CrossRef]
  13. C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
    [CrossRef] [PubMed]
  14. W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
    [CrossRef]
  15. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
    [CrossRef]
  16. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  17. C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006).
    [CrossRef] [PubMed]
  18. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
    [CrossRef] [PubMed]
  19. S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
    [CrossRef]
  20. S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
    [CrossRef]
  21. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004).
    [CrossRef]
  22. W. Shi and Z. Ma, “Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix,” Biosens. Bioelectron. 26, 1098–1103(2010).
    [CrossRef] [PubMed]
  23. L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
    [CrossRef] [PubMed]
  24. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
    [CrossRef]
  25. P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
    [CrossRef]
  26. M. Danckwerts and L.Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
    [CrossRef] [PubMed]
  27. P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8, 4347–4352 (2008).
    [CrossRef]
  28. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
    [CrossRef]
  29. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
    [CrossRef]
  30. V. V. R. Sai, T. Kundu, and S. Mukherji,“Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
    [CrossRef] [PubMed]
  31. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688–703 (2007).
    [CrossRef]
  32. B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 28, 1629–1639 (1996).
    [CrossRef]
  33. S. K. Khijwania and B. D. Gupta, “Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe,” Opt. Commun. 175, 135–137(2000).
    [CrossRef]
  34. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
    [CrossRef]
  35. S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48, 3796–3802 (2009).
    [CrossRef] [PubMed]
  36. U. Kreibig, “Electronic properties of small silver particle: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1011 (1974).
    [CrossRef]
  37. C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  38. U. Kreibig, “Kramers Kronig analysis of the optical properties of small silver particles,” Z. Phys. 234, 307–318 (1970).
    [CrossRef]
  39. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  40. B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
    [CrossRef]
  41. A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).
    [CrossRef]
  42. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
    [CrossRef]
  43. C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
    [CrossRef]
  44. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
    [CrossRef]
  45. H. Portales, N. Pinna, and M. Pileni, “Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method,” J. Phys. Chem. A 113, 4094–4099 (2009).
    [CrossRef] [PubMed]
  46. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
    [CrossRef]
  47. T. Makaryan, A. Melikyan, and H. Minassian, “Surface plasmon frequency spectrum in a system of two spherical dielectric coated metallic nanoparticles,” Acta Phys. Pol. A 112, 3–7(2007).
  48. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
    [CrossRef]
  49. Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004).
    [CrossRef]
  50. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
    [CrossRef]
  51. E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114, 3918–3923 (2010).
    [CrossRef]

2010 (3)

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

W. Shi and Z. Ma, “Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix,” Biosens. Bioelectron. 26, 1098–1103(2010).
[CrossRef] [PubMed]

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114, 3918–3923 (2010).
[CrossRef]

2009 (4)

S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48, 3796–3802 (2009).
[CrossRef] [PubMed]

H. Portales, N. Pinna, and M. Pileni, “Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method,” J. Phys. Chem. A 113, 4094–4099 (2009).
[CrossRef] [PubMed]

V. V. R. Sai, T. Kundu, and S. Mukherji,“Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef] [PubMed]

B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
[CrossRef]

2008 (2)

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8, 4347–4352 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

2007 (8)

K. A. Willets and R. P. Van Duyne “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

M. Danckwerts and L.Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).
[CrossRef]

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688–703 (2007).
[CrossRef]

T. Makaryan, A. Melikyan, and H. Minassian, “Surface plasmon frequency spectrum in a system of two spherical dielectric coated metallic nanoparticles,” Acta Phys. Pol. A 112, 3–7(2007).

2006 (3)

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef] [PubMed]

C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006).
[CrossRef] [PubMed]

2005 (3)

C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77, 338–346(2005).
[CrossRef]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

2004 (3)

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004).
[CrossRef]

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004).
[CrossRef]

2003 (7)

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

2002 (2)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
[CrossRef]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

2000 (3)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[CrossRef] [PubMed]

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe,” Opt. Commun. 175, 135–137(2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15(1999).
[CrossRef]

1998 (1)

S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

1996 (2)

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 28, 1629–1639 (1996).
[CrossRef]

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

1989 (1)

W. Hickel, D. Kamp, and W. Knoll, “Surface–plasmon microscopy,” Nature 339, 186 (1989).
[CrossRef]

1983 (1)

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

1974 (1)

U. Kreibig, “Electronic properties of small silver particle: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1011 (1974).
[CrossRef]

1970 (1)

U. Kreibig, “Kramers Kronig analysis of the optical properties of small silver particles,” Z. Phys. 234, 307–318 (1970).
[CrossRef]

Alexander, R. W.

Alivisatos, A. P.

L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
[CrossRef] [PubMed]

An, J.

B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
[CrossRef]

Astilean, S.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Atwater, H. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

Au, L.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

Averitt, R. D.

S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
[CrossRef]

Barnes, W. L.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Biteen, J. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

Bohren, C. F.

C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

Brockman, J. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[CrossRef] [PubMed]

Burda, C.

C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef] [PubMed]

Chen, J.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

Chen, X.

C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef] [PubMed]

Corn, R. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Coronado, E. A.

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114, 3918–3923 (2010).
[CrossRef]

Danckwerts, M.

M. Danckwerts and L.Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

Deshmukh, C.

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

Dodeja, H.

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 28, 1629–1639 (1996).
[CrossRef]

Durant, S.

Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8, 4347–4352 (2008).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef] [PubMed]

C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef] [PubMed]

Encina, E. R.

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114, 3918–3923 (2010).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15(1999).
[CrossRef]

Goettmann, F.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

Gole, A. M.

C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006).
[CrossRef] [PubMed]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Gupta, B. D.

S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48, 3796–3802 (2009).
[CrossRef] [PubMed]

S. K. Khijwania and B. D. Gupta, “Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe,” Opt. Commun. 175, 135–137(2000).
[CrossRef]

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 28, 1629–1639 (1996).
[CrossRef]

Haes, A. J.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004).
[CrossRef]

Halas, N. J.

S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77, 338–346(2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Hickel, W.

W. Hickel, D. Kamp, and W. Knoll, “Surface–plasmon microscopy,” Nature 339, 186 (1989).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15(1999).
[CrossRef]

J. Homola and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, 2006).
[CrossRef]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Hunyadi, S.

C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8, 4347–4352 (2008).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Käl, M.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Kamp, D.

W. Hickel, D. Kamp, and W. Knoll, “Surface–plasmon microscopy,” Nature 339, 186 (1989).
[CrossRef]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Kelly, K. L.

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania and B. D. Gupta, “Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe,” Opt. Commun. 175, 135–137(2000).
[CrossRef]

Knoll, W.

W. Hickel, D. Kamp, and W. Knoll, “Surface–plasmon microscopy,” Nature 339, 186 (1989).
[CrossRef]

Kreibig, U.

U. Kreibig, “Electronic properties of small silver particle: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1011 (1974).
[CrossRef]

U. Kreibig, “Kramers Kronig analysis of the optical properties of small silver particles,” Z. Phys. 234, 307–318 (1970).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

Kumar, P.

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

Kundu, T.

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji,“Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

Lazarides, A. A.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

Letsinger, R. L.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688–703 (2007).
[CrossRef]

Lewis, N. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

Li, X.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Long, L. L.

Lu, X.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

Lucotti, A.

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).
[CrossRef]

Ma, Z.

W. Shi and Z. Ma, “Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix,” Biosens. Bioelectron. 26, 1098–1103(2010).
[CrossRef] [PubMed]

Makaryan, T.

T. Makaryan, A. Melikyan, and H. Minassian, “Surface plasmon frequency spectrum in a system of two spherical dielectric coated metallic nanoparticles,” Acta Phys. Pol. A 112, 3–7(2007).

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

Manna, L.

L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
[CrossRef] [PubMed]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77, 338–346(2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Meisel, A.

L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
[CrossRef] [PubMed]

Melikyan, A.

T. Makaryan, A. Melikyan, and H. Minassian, “Surface plasmon frequency spectrum in a system of two spherical dielectric coated metallic nanoparticles,” Acta Phys. Pol. A 112, 3–7(2007).

Mertens, H.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

Milliron, D.

L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
[CrossRef] [PubMed]

Minassian, H.

T. Makaryan, A. Melikyan, and H. Minassian, “Surface plasmon frequency spectrum in a system of two spherical dielectric coated metallic nanoparticles,” Acta Phys. Pol. A 112, 3–7(2007).

Mirkin, C. A.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
[CrossRef]

Moores, A.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

Mucic, R. C.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Mukherji, S.

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji,“Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef] [PubMed]

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Murphy, C.

C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006).
[CrossRef] [PubMed]

Murray, W. A.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688–703 (2007).
[CrossRef]

Narayan, R.

C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef] [PubMed]

Nelson, B. P.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[CrossRef] [PubMed]

Novotny, L.

M. Danckwerts and L.Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Oldenburg, S.

S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Ordal, M. A.

Orendorff, C.

C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006).
[CrossRef] [PubMed]

Pileni, M.

H. Portales, N. Pinna, and M. Pileni, “Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method,” J. Phys. Chem. A 113, 4094–4099 (2009).
[CrossRef] [PubMed]

Piliarik, M.

J. Homola and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, 2006).
[CrossRef]

Pinna, N.

H. Portales, N. Pinna, and M. Pileni, “Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method,” J. Phys. Chem. A 113, 4094–4099 (2009).
[CrossRef] [PubMed]

Polman, A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

Portales, H.

H. Portales, N. Pinna, and M. Pileni, “Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method,” J. Phys. Chem. A 113, 4094–4099 (2009).
[CrossRef] [PubMed]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

Sai, V. V. R.

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji,“Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef] [PubMed]

Schatz, G. C.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004).
[CrossRef]

C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Scher, E. C.

L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
[CrossRef] [PubMed]

Schultz, D.

J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
[CrossRef]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
[CrossRef]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688–703 (2007).
[CrossRef]

Shi, W.

W. Shi and Z. Ma, “Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix,” Biosens. Bioelectron. 26, 1098–1103(2010).
[CrossRef] [PubMed]

Skrabalak, S. E.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

Smith, D.

J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
[CrossRef]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

Srivastava, S. K.

Storhoff, J. J.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

Su, K.-H.

Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004).
[CrossRef]

Sun, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

Tang, B.

B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
[CrossRef]

Titus, S.

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

Tomar, A. K.

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 28, 1629–1639 (1996).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77, 338–346(2005).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

Verma, R. K.

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Ward, C. A.

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

Wei, Q.-H.

Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004).
[CrossRef]

Westcott, S. L.

S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Xia, Y.

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

Xu, S.

B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
[CrossRef]

Xu, W.

B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15(1999).
[CrossRef]

Zerbi, G.

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).
[CrossRef]

Zhang, X.

Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

Zhao, B.

B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

Zhao, L.L.

C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Zou, S.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004).
[CrossRef]

Acta Phys. Pol. A (1)

T. Makaryan, A. Melikyan, and H. Minassian, “Surface plasmon frequency spectrum in a system of two spherical dielectric coated metallic nanoparticles,” Acta Phys. Pol. A 112, 3–7(2007).

Adv. Mater. (1)

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for biomedical applications,” Adv. Mater. 19, 3177–3184 (2007).
[CrossRef]

Anal. Chem. (1)

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77, 338–346(2005).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films,” Annu. Rev. Phys. Chem. 51, 41–63 (2000).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Appl. Opt. (2)

Biosens. Bioelectron. (2)

W. Shi and Z. Ma, “Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix,” Biosens. Bioelectron. 26, 1098–1103(2010).
[CrossRef] [PubMed]

V. V. R. Sai, T. Kundu, and S. Mukherji,“Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

S. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

C. Burda, X. Chen, R. Narayan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef] [PubMed]

Inorg. Chem. (1)

C. Murphy, A. M. Gole, S. Hunyadi, and C. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544–7554 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759(2002).
[CrossRef]

J. Phys. Chem. A (1)

H. Portales, N. Pinna, and M. Pileni, “Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method,” J. Phys. Chem. A 113, 4094–4099 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B (7)

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L.L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968(2004).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[CrossRef]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käl, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[CrossRef]

J. Phys. Chem. C (3)

B. Tang, S. Xu, J. An, B. Zhao, and W. Xu, “Photoinduced shape conversion and reconstruction of silver nanoparticle,” J. Phys. Chem. C 113, 7025–7030 (2009).
[CrossRef]

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C 114, 3918–3923 (2010).
[CrossRef]

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111, 13372–13377 (2007).
[CrossRef]

J. Phys. F (1)

U. Kreibig, “Electronic properties of small silver particle: the optical constants and their temperature dependence,” J. Phys. F 4, 999–1011 (1974).
[CrossRef]

Langmuir (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Nano Lett. (4)

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8, 4347–4352 (2008).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090(2003).
[CrossRef]

Q.-H. Wei, K.-H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067–1071 (2004).
[CrossRef]

Nat. Mater. (1)

L. Manna, D. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2, 382–385 (2003).
[CrossRef] [PubMed]

Nature (1)

W. Hickel, D. Kamp, and W. Knoll, “Surface–plasmon microscopy,” Nature 339, 186 (1989).
[CrossRef]

New J. Chem. (1)

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

Opt. Commun. (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical property of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141(2003).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe,” Opt. Commun. 175, 135–137(2000).
[CrossRef]

Opt. Quantum Electron. (1)

B. D. Gupta, H. Dodeja, and A. K. Tomar, “Fibre-optic evanescent field absorption sensor based on a U-shaped probe,” Opt. Quantum Electron. 28, 1629–1639 (1996).
[CrossRef]

Phys. Rev. B (1)

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

M. Danckwerts and L.Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

Plasmonics (1)

P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Science (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef] [PubMed]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Sens. Actuators B (4)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15(1999).
[CrossRef]

V. V. R. Sai, T. Kundu, C. Deshmukh, S. Titus, P. Kumar, and S. Mukherji, “Label-free fiberoptic biosensor based on evanescent wave absorbance at 280 nm,” Sens. Actuators B 143, 724–730 (2010).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688–703 (2007).
[CrossRef]

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).
[CrossRef]

Z. Phys. (1)

U. Kreibig, “Kramers Kronig analysis of the optical properties of small silver particles,” Z. Phys. 234, 307–318 (1970).
[CrossRef]

Other (3)

C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 2004).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

J. Homola and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup for monitoring the plasmon resonance of AgNPs bound on the surface of the fiber core.

Fig. 2
Fig. 2

(a) Comparison between the spectrum of AgNP solution (i) and the absorbance spectra obtained from the fiber probe due to AgNPs binding in different incubation times at (ii)  t = 82 s , (iii)  t = 22 s , (iv)  t = 990   s . (v)  t = 2096 s , (vi)  t = 3211 s . (b) Observed redshift of the absorption peak with respect to time.

Fig. 3
Fig. 3

(a) Absorption spectra obtained by injecting different refractive index sucrose solutions. (b) Observed blueshift with respect to different refractive indices.

Fig. 4
Fig. 4

Comparison between experimental (dotted line) and theoretically simulated (solid line) spectra. (a) Absorption spectrum of AgNPs in solution, (b) after AgNP binding at t = 82 s , (c) and t = 3211 s . The spectra have been normalized at the plasmon absorption maximum for comparison.

Fig. 5
Fig. 5

Variation of the fitted parameters with respect to time: (I) maximum absorption, (II)  ε ( ω ) (imaginary part), (III)  ε m (dielectric constant of medium surrounding the nano particle), and (IV) G (shape factor).

Fig. 6
Fig. 6

The field emission gun scanning electron microscope image of AgNPs on the silanized optical fiber surface.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q abs = 24 π R λ ε m 3 / 2 ε ( ω ) [ ε ( ω ) + G ε m ] 2 + [ ε ( ω ) ] 2 ,
ε ( ω ) = ε ω p 2 ω 2 + ω d 2
ε ( ω ) = ω p 2 ω d ω ( ω 2 + ω d 2 ) ,
ω d = ω 0 + v f R bulk ,
ε m = 0.7 × ε m solution + 0.3 × ε m substrate .

Metrics