Abstract

A photonic crystal fiber (PCF) is proposed that is composed of a central defect core and cladding with elliptical air holes along the fiber length. In the structure, two circular air holes are enlarged near the central region to reduce core size and induce high nonlinearity. Its dispersion, birefringence, nonlinearity coefficient, and confinement loss are investigated simultaneously by using the full-vectorial finite element method with anisotropic perfectly matched layers. Numerical results indicate that the proposed PCF has two zero-dispersion wavelengths (ZDWs) and stronger confinement ability in its guide mode, in which the confinement loss is lower than 102dBm1. The two high-birefringence ZDWs can be optimized by adjusting the geometric parameters of the proposed fiber, such as air-filling fraction d/Λ and air-hole ellipticity η. With the fixed parameters d/Λ=0.6 and η=2.85, the two ZDWs are present in the communication window, and the corresponding birefringence and nonlinearity coefficient are as high as 4.8×102 and 105W1km1, respectively. The proposed two-ZDW PCF with high birefringence and nonlinearity will have important applications in four-wave mixing and higher-order dispersion effects.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  3. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
    [CrossRef] [PubMed]
  4. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef] [PubMed]
  5. J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia, “Optical micro-manipulation using supercontinuum Laguerre Gaussian and Gaussian beams,” Opt. Express 16, 10117–10129 (2008).
    [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  7. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [CrossRef]
  8. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
    [CrossRef] [PubMed]
  9. T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. R. Keiding, and J. J. Larsen, “Continuous-wave wavelength conversion in a photonics crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12, 4113–4122 (2004).
    [CrossRef] [PubMed]
  10. Y. Zhang, L. Ren, Y. Gong, X. Li, L. Wang, and C. Sun, “Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing,” Appl. Opt. 49, 3208–3214 (2010).
    [CrossRef] [PubMed]
  11. M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
    [CrossRef]
  12. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jim, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32, 469–471 (2007).
    [CrossRef] [PubMed]
  13. D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700–2705 (2007).
    [CrossRef]
  14. Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008).
  15. Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
    [CrossRef]
  16. Y. Zhang, “High birefringence negative dispersion effect of novel rectangular lattice photonic crystal fiber,” Acta Phys. Sin. 59, 8632–8639 (2010).
  17. Y. Zhang, “Low dispersion high birefringence effect of squeezed hexagonal lattice elliptical hole photonic crystal fiber,” Acta Phys. Sin. 59, 4050–4055 (2010).
  18. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B 21, 249–257 (2004).
    [CrossRef]
  19. Z. Zhu and T. G. Brown, “Experimental studies of polarization properties of supercontinuum generated in a birefringent photonic crystal fiber,” Opt. Express 12, 791–796 (2004).
    [CrossRef] [PubMed]
  20. X. Liu, “Theory and experiments for multiple four-wave-mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
    [CrossRef]
  21. C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fiber pumped at 1064 nm and application to tuneable visible/UV generation,” Opt. Express 16, 2438 (2008).
    [CrossRef] [PubMed]
  22. K. Saitoh and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
    [CrossRef] [PubMed]
  23. Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
    [CrossRef]
  24. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–740 (2000).
    [CrossRef]
  25. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).
    [CrossRef]
  26. X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
    [CrossRef]
  27. G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  28. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
    [CrossRef] [PubMed]
  29. X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
    [CrossRef]
  30. W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005).
    [CrossRef]

2010 (3)

Y. Zhang, “High birefringence negative dispersion effect of novel rectangular lattice photonic crystal fiber,” Acta Phys. Sin. 59, 8632–8639 (2010).

Y. Zhang, “Low dispersion high birefringence effect of squeezed hexagonal lattice elliptical hole photonic crystal fiber,” Acta Phys. Sin. 59, 4050–4055 (2010).

Y. Zhang, L. Ren, Y. Gong, X. Li, L. Wang, and C. Sun, “Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing,” Appl. Opt. 49, 3208–3214 (2010).
[CrossRef] [PubMed]

2008 (6)

C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fiber pumped at 1064 nm and application to tuneable visible/UV generation,” Opt. Express 16, 2438 (2008).
[CrossRef] [PubMed]

J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia, “Optical micro-manipulation using supercontinuum Laguerre Gaussian and Gaussian beams,” Opt. Express 16, 10117–10129 (2008).
[CrossRef] [PubMed]

X. Liu, “Theory and experiments for multiple four-wave-mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
[CrossRef]

Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008).

Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
[CrossRef]

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

2007 (3)

2005 (4)

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[CrossRef] [PubMed]

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005).
[CrossRef]

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

2004 (4)

2003 (3)

2002 (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

1997 (1)

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Andersen, T. V.

Antkowiak, M.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Belardi, W.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005).
[CrossRef]

Berghmans, F.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).
[CrossRef]

Bouwmans, G.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005).
[CrossRef]

Brown, T. G.

Carruthers, A. E.

Chen, D.

Chudoba, C.

Chung, Y.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Cizmar, T.

Cucinotta, A.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).
[CrossRef]

Dholakia, K.

Dong, X.

Douay, M.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005).
[CrossRef]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

Fischer, P.

Fujimoto, J. G.

Ghanta, R. K.

Gong, Y.

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Hansen, K. P.

Hartl, I.

Hilligsøe, K. M.

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Jim, L.

Kai, G.

Keiding, S. R.

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Ko, T. H.

Koshiba, M.

Kotynski, R.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Larsen, J. J.

Lesiak, P.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Li, X.

Li, X. D.

Li, Y.

Lin, A.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Liu, J.

Liu, X.

X. Liu, “Theory and experiments for multiple four-wave-mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
[CrossRef]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005).
[CrossRef] [PubMed]

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

Liu, X. M.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Liu, Y.

Lu, C.

Lu, F.

Lu, K. Q.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Lu, Y.

Mazilu, M.

Miao, R.

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
[CrossRef]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Morris, J. E.

Nasilowski, T.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Ng, J.

Nielsen, C. K.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

Paulsen, H. N.

Poli, F.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).
[CrossRef]

Provino, L.

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005).
[CrossRef]

Ranka, J. K.

Reece, P. J.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

Ren, L.

Y. Zhang, L. Ren, Y. Gong, X. Li, L. Wang, and C. Sun, “Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing,” Appl. Opt. 49, 3208–3214 (2010).
[CrossRef] [PubMed]

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
[CrossRef]

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

Saitoh, K.

Selleri, S.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).
[CrossRef]

Shen, L.

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

Stentz, A. J.

Sun, C.

Sun, T.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

Thienpont, H.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Thøgersen, J.

Tsuji, Y.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Urbanczyk, W.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Wadsworth, W. J.

Wang, H.

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
[CrossRef]

Wang, L.

Y. Zhang, L. Ren, Y. Gong, X. Li, L. Wang, and C. Sun, “Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing,” Appl. Opt. 49, 3208–3214 (2010).
[CrossRef] [PubMed]

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
[CrossRef]

Wang, Y. S.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Wang, Z.

Windeler, R. S.

Wojcik, J.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

Xiong, C.

Yang, X.

Yuan, S.

Yue, Y.

Zhang, C.

Zhang, T. Y.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, L. Ren, Y. Gong, X. Li, L. Wang, and C. Sun, “Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing,” Appl. Opt. 49, 3208–3214 (2010).
[CrossRef] [PubMed]

Y. Zhang, “High birefringence negative dispersion effect of novel rectangular lattice photonic crystal fiber,” Acta Phys. Sin. 59, 8632–8639 (2010).

Y. Zhang, “Low dispersion high birefringence effect of squeezed hexagonal lattice elliptical hole photonic crystal fiber,” Acta Phys. Sin. 59, 4050–4055 (2010).

Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008).

Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
[CrossRef]

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
[CrossRef]

Zhao, W.

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
[CrossRef]

Zhou, X.

Zhu, Z.

Acta Phys. Sin. (3)

Y. Zhang, “High birefringence tunable effect of microstructured polymer optical fiber,” Acta Phys. Sin. 57, 5729–5734 (2008).

Y. Zhang, “High birefringence negative dispersion effect of novel rectangular lattice photonic crystal fiber,” Acta Phys. Sin. 59, 8632–8639 (2010).

Y. Zhang, “Low dispersion high birefringence effect of squeezed hexagonal lattice elliptical hole photonic crystal fiber,” Acta Phys. Sin. 59, 4050–4055 (2010).

Appl. Opt. (1)

Chin. Phys. (1)

Y. Zhang, R. Miao, L. Ren, H. Wang, L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre,” Chin. Phys. 16, 1719–1724 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Belardi, G. Bouwmans, L. Provino, and M. Douay, “Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area,” IEEE J. Quantum Electron. 41, 1558–1564 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065–1067 (2004).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

Y. Zhang, “Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer,” J. Mod. Opt. 55, 3563–3571 (2008).
[CrossRef]

J. Opt. A (1)

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibers,” J. Opt. A 7, 763–766 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

X. M. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008).
[CrossRef]

Nature (2)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515(2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. A (2)

X. Liu, X. Zhou, and C. Lu, “Multiple four wave mixing self stability in optical fibers,” Phys. Rev. A 72, 013811 (2005).
[CrossRef]

X. Liu, “Theory and experiments for multiple four-wave-mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A 77, 043818 (2008).
[CrossRef]

Other (1)

G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic cross section of the proposed PCF and magnified core region.

Fig. 2
Fig. 2

Curves for (a) waveguide dispersion D w ( λ ) , (b) birefringence B ( λ ) , and (c) nonlinear coefficient γ ( λ ) versus wavelength for the proposed PCF with different values of air-filling fraction d / Λ , Λ = 1.0 μm , and η = 2.22 .

Fig. 3
Fig. 3

Curves for (a) waveguide dispersion D w ( λ ) , (b) birefringence B ( λ ) , and (c) nonlinear coefficient γ ( λ ) versus wavelength for the proposed PCF with different values of ellipticity rate η, Λ = 1.0 μm , and d / Λ = 0.6 .

Fig. 4
Fig. 4

Curves for (a) waveguide dispersion D w ( λ ) , (b) birefringence B ( λ ) , and (c) nonlinearity coefficient γ ( λ ) versus wavelength for the proposed PCF with different values of pitch Λ, d / Λ = 0.6 , and (d)  η = 2.85 , and total dispersion versus wavelength for the optimized elliptical hole PCF.

Fig. 5
Fig. 5

(a) Mode refractive index, (b) contour plots of fundamental mode, and (c) leakage loss for the proposed PCF with Λ = 1.0 μm , d / Λ = 0.6 , and η = 2.85 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D w ( λ ) = λ c 2 | Re ( n eff ) | λ 2 ,
B ( λ ) = | Re ( n eff y ( λ ) ) Re ( n eff x ( λ ) ) | ,
L c ( λ ) = 2 × 10 7 ln ( 10 ) 2 π λ Im [ n eff ] ,
γ ( λ ) = 2 π n 2 λ A eff ,
A eff = ( | E 2 | d x d y ) 2 | E | 4 d x d y .

Metrics