Abstract

Flattop wavelength conversion over a 70nm bandwidth in a 45-mm-long periodically poled lithium niobate (PPLN) waveguide based on nonlinear cascaded sum frequency generation (SFG) and difference frequency generation processes using two separated wavelengths, is realized. A 2dB peak-to-peak ripple over the conversion bandwidth in the C band is observed when the two pumps are fixed for perfectly phase-matched SFG conversion; this is significantly reduced to 0.5dB by slight detuning of one of the pumps to a longer wavelength. We also demonstrate multichannel broadcasting using two pumps to convert one signal wavelength to three idlers. Using the aperiodically poled lithium niobate waveguide increases the idler separation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “Photonic processing of 320 Gbits/s based on sum-/difference-frequency generation and pump depletion in a single PPLN waveguide,” Opt. Lett. 34, 1825–1827 (2009).
    [CrossRef] [PubMed]
  2. J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160 Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron. 45, 694–699 (2009).
    [CrossRef]
  3. F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
    [CrossRef]
  4. C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
    [CrossRef]
  5. J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
    [CrossRef]
  6. J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16, 6957–6962 (2008).
    [CrossRef] [PubMed]
  7. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).
    [CrossRef]
  8. M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
    [CrossRef]
  9. C. Q. Xu and B. Chen, “Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation,” Opt. Lett. 29, 292–294 (2004).
    [CrossRef] [PubMed]
  10. M. Gong, Y. Chen, F. Lu, and X. Chen, “Multi-broadcast wavelength conversion using simultaneous cSHG/DFG and cSFG/DFG,” in Asia Communications and Photonics Conference and Exhibition (ACP), 2009 (2009), pp. 1–2.
  11. M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett. 35, 2672–2674 (2010).
    [CrossRef] [PubMed]
  12. A. Tehranchi and R. Kashyap, “Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides,” Appl. Opt. 48, G143–G147 (2009).
    [CrossRef] [PubMed]
  13. F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
    [CrossRef]

2010

2009

2008

2007

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

2006

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

2004

1999

1993

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Ampalavanapillai, N.

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

Assanto, G.

Bogoni, A.

Chen, B.

Chen, X.

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett. 35, 2672–2674 (2010).
[CrossRef] [PubMed]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16, 6957–6962 (2008).
[CrossRef] [PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

M. Gong, Y. Chen, F. Lu, and X. Chen, “Multi-broadcast wavelength conversion using simultaneous cSHG/DFG and cSFG/DFG,” in Asia Communications and Photonics Conference and Exhibition (ACP), 2009 (2009), pp. 1–2.

Chen, Y.

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett. 35, 2672–2674 (2010).
[CrossRef] [PubMed]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16, 6957–6962 (2008).
[CrossRef] [PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

M. Gong, Y. Chen, F. Lu, and X. Chen, “Multi-broadcast wavelength conversion using simultaneous cSHG/DFG and cSFG/DFG,” in Asia Communications and Photonics Conference and Exhibition (ACP), 2009 (2009), pp. 1–2.

Drummond, M. V.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Fazal, I.

Gallo, K.

Gong, M.

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett. 35, 2672–2674 (2010).
[CrossRef] [PubMed]

M. Gong, Y. Chen, F. Lu, and X. Chen, “Multi-broadcast wavelength conversion using simultaneous cSHG/DFG and cSFG/DFG,” in Asia Communications and Photonics Conference and Exhibition (ACP), 2009 (2009), pp. 1–2.

Gu, W.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160 Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron. 45, 694–699 (2009).
[CrossRef]

Hideaki, F.

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

Hiroshi, T.

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

Ito, H.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Kashyap, R.

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Lu, F.

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett. 35, 2672–2674 (2010).
[CrossRef] [PubMed]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16, 6957–6962 (2008).
[CrossRef] [PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

M. Gong, Y. Chen, F. Lu, and X. Chen, “Multi-broadcast wavelength conversion using simultaneous cSHG/DFG and cSFG/DFG,” in Asia Communications and Photonics Conference and Exhibition (ACP), 2009 (2009), pp. 1–2.

Lu, W.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

Monteiro, P. P.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Naoya, W.

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

Nogueira, R. N.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Priezzhev, A. V.

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Pustovoy, V. I.

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Reis, J. D.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Satoshi, S.

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

Shcherbakov, I. A.

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Shen, J.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160 Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron. 45, 694–699 (2009).
[CrossRef]

Shinada, S.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Sun, J.

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Tehranchi, A.

Teixeira, A. L.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Tetsuya, M.

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

Wada, N.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

Wang, J.

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Wang, Q.

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Willner, A. E.

Wu, X.

Xia, Y.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

Xu, C. Q.

C. Q. Xu and B. Chen, “Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation,” Opt. Lett. 29, 292–294 (2004).
[CrossRef] [PubMed]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Xu, K.

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Yao, J. Q.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160 Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron. 45, 694–699 (2009).
[CrossRef]

Yu, S.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160 Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron. 45, 694–699 (2009).
[CrossRef]

Zhang, J.

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16, 6957–6962 (2008).
[CrossRef] [PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3channel waveguide,” Appl. Phys. Lett. 63, 3559–3561 (1993).
[CrossRef]

Electron. Lett.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43, 1446–1447 (2007).
[CrossRef]

IEEE J. Quantum Electron.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160 Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron. 45, 694–699 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Hideaki, N. Ampalavanapillai, W. Naoya, S. Satoshi, T. Hiroshi, and M. Tetsuya, “Tunable all-optical wavelength conversion of 160 Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19, 384–386 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE

J. Wang, J. Sun, I. A. Shcherbakov, K. Xu, Q. Wang, A. V. Priezzhev, and V. I. Pustovoy, “40 Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” Proc. SPIE 6344, 634407 (2006).
[CrossRef]

Other

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Wavelength conversion of a 160 Gb/s RZ OTDM signal in a PPLN waveguide at room temperature,” in Photonics in Switching, 2009. PS ’09. International Conference (2009), pp. 1–2.
[CrossRef]

M. Gong, Y. Chen, F. Lu, and X. Chen, “Multi-broadcast wavelength conversion using simultaneous cSHG/DFG and cSFG/DFG,” in Asia Communications and Photonics Conference and Exhibition (ACP), 2009 (2009), pp. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for cascaded SFG-DFG wavelength conversion.

Fig. 2
Fig. 2

Measured spectrum of the wavelength conversion using an SFG-DFG scheme.

Fig. 3
Fig. 3

Normalized conversion efficiency versus signal wavelength in SFG-DFG for perfectly phase-matched pumps (dotted curve), and when the longer pump is detuned by 0.15 nm from the phase-matched wavelength (solid curve).

Fig. 4
Fig. 4

Measured spectrum using OSA: one signal is converted to three idlers using two closely spaced pumps for a PPLN waveguide (solid curve) and for an aPPLN waveguide (dotted curve). λ 0 is the phase-matched wavelength for the SFG process, which is 1543.33 nm for the PPLN waveguide and 1534.34 nm for the aPPLN waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P c = P s P p 1 P p 2 κ SFG 2 κ DFG 2 L 2 4 .

Metrics