Abstract

We extend the work of the first two papers in this series [Appl. Opt. 50, 4998–5011 (2011)APOPAI0003-6935, Appl. Opt. 50, 5012–5022 (2011)APOPAI0003-6935] to design compound prisms for linear-in-wavenumber dispersion, especially for application in spectral domain optical coherence tomography (OCT). These dispersive prism designs are believed to be the first to meet the requirements of high resolution OCT systems in direct-view geometry, where they can be used to shrink system size, to improve light throughput, to reduce stray light, and to reduce errors resulting from interpolating between wavelength- and wavenumber-sampled domains. We show prism designs that can be used for thermal sources or for wideband superluminescent diodes centered around wavelengths 850, 900, 1300, and 1375nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, I,” Appl. Opt. 50, 4998–5011 (2011).
    [CrossRef]
  2. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, II: triplet and Janssen prisms,” Appl. Opt. 50, 5012–5022 (2011).
    [CrossRef]
  3. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475–1477 (1999).
    [CrossRef]
  4. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [CrossRef]
  5. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32, 3525–3527 (2007).
    [CrossRef] [PubMed]
  6. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16, 8916–8937 (2008).
    [CrossRef] [PubMed]
  7. V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106, 459–465 (2009).
    [CrossRef]
  8. M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography,” Appl. Opt. 50, 1158–1163 (2011).
    [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  10. M. A. Popescu, Non-Crystalline Chalcogenides (Springer, 2002).
  11. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
    [CrossRef]
  12. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532(2002).
    [CrossRef]
  13. B. Laude, A. D. Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002).
    [CrossRef] [PubMed]
  14. S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
    [CrossRef]
  15. URL: http://www.owlnet.rice.edu/~tt3/.

2011 (3)

2009 (1)

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106, 459–465 (2009).
[CrossRef]

2008 (1)

2007 (1)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
[CrossRef]

2002 (2)

2000 (2)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
[CrossRef]

1999 (1)

Belabas, N.

Benattar, L.

Biedermann, B. R.

Boccara, A. C.

Boppart, S. A.

Dorrer, C.

Drévillon, B.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Dubois, A.

Eigenwillig, C. M.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Gelikonov, G. V.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106, 459–465 (2009).
[CrossRef]

Gelikonov, V. M.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106, 459–465 (2009).
[CrossRef]

Groom, D. E.

S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
[CrossRef]

Hagen, N.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Holland, S. E.

S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
[CrossRef]

Hu, Z.

Huber, R.

Jeon, M.

Joffre, M.

Jung, U.

Jung, W.

Kato, T.

Kim, J.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Laude, B.

Lee, C.

Leitgeb, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Likforman, J.-P.

Martino, A. D.

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Oka, K.

Palaio, N. P.

S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
[CrossRef]

Palte, G.

Popescu, M. A.

M. A. Popescu, Non-Crystalline Chalcogenides (Springer, 2002).

Rollins, A. M.

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Schwartz, L.

Shilyagin, P. A.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106, 459–465 (2009).
[CrossRef]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Stover, R. J.

S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
[CrossRef]

Tkaczyk, T. S.

Vabre, L.

Wei, M.

S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Electron Devices (1)

S. E. Holland, D. E. Groom, N. P. Palaio, R. J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE Trans. Electron Devices 50, 225–238 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Spectrosc. (1)

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106, 459–465 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Other (2)

M. A. Popescu, Non-Crystalline Chalcogenides (Springer, 2002).

URL: http://www.owlnet.rice.edu/~tt3/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dispersion of SF66 glass is substantially nonlinear when plotted against the wavelength (black solid curve), but much less so when plotted against the wavenumber (black dashed curve). The spectral dispersion of a grating, on the other hand, is linear in the wavelength domain (red solid curve), but substantially nonlinear in the wavenumber domain (red dashed curve). The nonlinearity parameter NL used to label the grating curves is defined in (2, 3).

Fig. 2
Fig. 2

Example triplet compound prism, where the second element is assumed to be oriented symmetrically with respect to the optical axis normal. The system shown here has prism apex angles ( α 1 , α 2 , α 3 ) = ( 85 ° , 90 ° , 55 ° ) , beam displacement Δ y , and axial thicknesses t 1 , t 2 , and t 3 . For this example, the input ray has an angle θ 0 = 0 ° , such that δ = 15 ° .

Fig. 3
Fig. 3

Layouts and dispersion gradient, d δ / d σ , of the designs shown in Table 1 (only three representative layouts are shown). (a)  Δ = 1 ° doublets, (b)  Δ = 4 ° double-Amici prisms, (c)  Δ = 4 ° triplets. Ideal linear dispersion produces a horizontal line in these plots, so that any variation from that line represents the nonlinear dispersion. Note that the spectra here are sampled uniformly in wavenumber; the corresponding wavelength labels are given on the upper x axis for reference.

Tables (3)

Tables Icon

Table 1 Linear-in-Wavenumber Dispersive Prisms for Wideband Visible Wavelength Spectral Interferometry: the Best Performing Prisms are Listed in Order of Dispersion Linearity in the Wavenumber Domain and Optimized over the Schott Glass Catalog a

Tables Icon

Table 2 OCT Prism Designs: the Best Performing Three-Element Prisms Listed in Order of Dispersion σ-Linearity, for δ * = 0 and θ 0 = 0 , and optimized (for sections (a)–(c)) over the ZEMAX Infrared Glass Catalog. Section (d) Optimizes over the Combined Schott Catalog and Infrared Catalog a

Tables Icon

Table 3 OCT Prism Designs: the Best Performing Double-Amici Prisms Listed in Order of Dispersion σ-Linearity, for δ * = 0 and θ 0 = 0 Optimized over the ZEMAX Infrared Glass Catalog a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ 1 = θ 0 + β 1 θ 3 = arcsin ( n 2 n 3 sin θ 3 ) θ 1 = arcsin ( 1 n 1 sin θ 1 ) θ 4 = θ 3 α 3 θ 2 = θ 1 α 1 θ 4 = arcsin ( n 3 sin θ 4 ) θ 2 = arcsin ( n 1 n 2 sin θ 2 ) θ 5 = θ 4 + γ 3 θ 3 = θ 2 α 2 } ,
NL λ = | d 2 δ d λ 2 | d λ ,
NL σ = | d 2 δ d σ 2 | d σ ,
M nl = M 0 + w nl NL ,
M 0 = ( δ ¯ δ ¯ * ) 2 + ( Δ Δ * ) 2 + Θ 2 .
Λ N x f λ range .

Metrics