Abstract

This paper presents the method and performance of the photoacoustic resonant cell remodified from a Helmholtz cavity that can be used to improve excitation of acoustical signal of the photoacoustic cell by photoacoustic effect. The other advantages of this method are that it can be used to detect flowing trace gases and it has small volume. In our experiments, the conventional nonresonant cell, the original Helmholtz resonant cell, and the remodified Helmholtz resonant cell were designed and tested respectively, based on the measurement of the CO2 contribution of the photoacoustic signal. The nonresonance test of the trace gas analyte CO2 conducted at 125Hz demonstrated signal about 4mV for CO2 concentrations at 300ppm and signal-to-noise (S/N) value (321). The original Helmholtz resonant test of the same analyte gas conducted at its resonant frequency demonstrated signal about 43mV and S/N value (3401). The remodified Helmholtz resonant test of the same analyte gas conducted at its resonant frequency demonstrated large signal about 67mV and high S/N value (5361). The test results show that the remodified Helmholtz photoacoustic resonant cell has a more outstanding measuring performance and more sensitivity compared to the two others.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Heaps and P. M. Pellegrino, “Examination of quantum cascade laser source for a MEMS scale photoacoustic chemical sensor,” Proc. SPIE 6218, 621805 (2006).
    [CrossRef]
  2. P. M. Pellegrino and R. G. Polcawieh, “Advancement of a MEMS photoacoustic chemical sensor,” Proc. SPIE 5085, 52–63 (2003).
    [CrossRef]
  3. K. Schjølberg-Henriksen, D. T. Wang, and H. Rogne, “High-resolution pressure sensor for photo acoustic gas detection,” Sens. Actuators A, Phys. 132, 207–213 (2006).
    [CrossRef]
  4. C. Hernandez, T. Murray, and S. Krishnaswamy, “Characterization of thin film MEMS using photo-acoustic microscopy,” Proc. SPIE 4400, 61–69 (2001).
    [CrossRef]
  5. S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system,” J. Microelectromech. Syst. 10, 232–237 (2001).
    [CrossRef]
  6. S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys. 92, 1555–1563 (2002).
    [CrossRef]
  7. I. G. Calasso, V. Funtov, and M. W. Sigrist, “Analysis of isotopic CO2 mixtures by laser photoacoustic spectroscopy,” Appl. Opt. 36, 3212–3216 (1997).
    [CrossRef] [PubMed]
  8. N. C. Fernelius, “Helmholtz resonance effect in photoacoustic cell,” Appl. Opt. 18, 1784–1787 (1979).
    [CrossRef] [PubMed]
  9. V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
    [CrossRef]
  10. G. Busse and D. Herboeck, “Differential Helmholtz resonator as an optoacoustic detector,” Appl. Opt. 18, 3959–3961(1979).
    [CrossRef] [PubMed]
  11. V. Zéninari, V. Kapitanov, D. Courtois, and Y. Ponomarev, “Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).
    [CrossRef]
  12. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, 2001).
  13. O. Nordhaus and J. Pelzl, “Frequency dependence of resonant photoacoustic cells: the extended Helmholtz resonator,” Appl. Phys. B 25, 221–229 (1981).
    [CrossRef]
  14. J. Pelzl, K. Klein, and O. Nordhaus, “Extended Helmholtz resonator in low-temperature photoacoustic spectroscopy,” Appl. Opt. 21, 94–99 (1982).
    [CrossRef] [PubMed]
  15. S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458–2461 (2002).
    [CrossRef]
  16. M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
    [CrossRef]

2006 (3)

D. A. Heaps and P. M. Pellegrino, “Examination of quantum cascade laser source for a MEMS scale photoacoustic chemical sensor,” Proc. SPIE 6218, 621805 (2006).
[CrossRef]

K. Schjølberg-Henriksen, D. T. Wang, and H. Rogne, “High-resolution pressure sensor for photo acoustic gas detection,” Sens. Actuators A, Phys. 132, 207–213 (2006).
[CrossRef]

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

2003 (2)

P. M. Pellegrino and R. G. Polcawieh, “Advancement of a MEMS photoacoustic chemical sensor,” Proc. SPIE 5085, 52–63 (2003).
[CrossRef]

V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
[CrossRef]

2002 (2)

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys. 92, 1555–1563 (2002).
[CrossRef]

S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458–2461 (2002).
[CrossRef]

2001 (2)

C. Hernandez, T. Murray, and S. Krishnaswamy, “Characterization of thin film MEMS using photo-acoustic microscopy,” Proc. SPIE 4400, 61–69 (2001).
[CrossRef]

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system,” J. Microelectromech. Syst. 10, 232–237 (2001).
[CrossRef]

1999 (1)

V. Zéninari, V. Kapitanov, D. Courtois, and Y. Ponomarev, “Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).
[CrossRef]

1997 (1)

1982 (1)

1981 (1)

O. Nordhaus and J. Pelzl, “Frequency dependence of resonant photoacoustic cells: the extended Helmholtz resonator,” Appl. Phys. B 25, 221–229 (1981).
[CrossRef]

1979 (2)

Barat, D.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Barbieri, S.

S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458–2461 (2002).
[CrossRef]

Busse, G.

Calasso, I. G.

Coppens, A. B.

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, 2001).

Courtois, D.

V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
[CrossRef]

V. Zéninari, V. Kapitanov, D. Courtois, and Y. Ponomarev, “Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).
[CrossRef]

Fernelius, N. C.

Firebaugh, S. L.

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys. 92, 1555–1563 (2002).
[CrossRef]

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system,” J. Microelectromech. Syst. 10, 232–237 (2001).
[CrossRef]

Frey, A. R.

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, 2001).

Funtov, V.

Heaps, D. A.

D. A. Heaps and P. M. Pellegrino, “Examination of quantum cascade laser source for a MEMS scale photoacoustic chemical sensor,” Proc. SPIE 6218, 621805 (2006).
[CrossRef]

Herboeck, D.

Hernandez, C.

C. Hernandez, T. Murray, and S. Krishnaswamy, “Characterization of thin film MEMS using photo-acoustic microscopy,” Proc. SPIE 4400, 61–69 (2001).
[CrossRef]

Jensen, K. F.

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys. 92, 1555–1563 (2002).
[CrossRef]

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system,” J. Microelectromech. Syst. 10, 232–237 (2001).
[CrossRef]

Kapitanov, V.

V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
[CrossRef]

V. Zéninari, V. Kapitanov, D. Courtois, and Y. Ponomarev, “Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).
[CrossRef]

Kinsler, L. E.

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, 2001).

Klein, K.

Koeth, J.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Krishnaswamy, S.

C. Hernandez, T. Murray, and S. Krishnaswamy, “Characterization of thin film MEMS using photo-acoustic microscopy,” Proc. SPIE 4400, 61–69 (2001).
[CrossRef]

Mattiello, M.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Murray, T.

C. Hernandez, T. Murray, and S. Krishnaswamy, “Characterization of thin film MEMS using photo-acoustic microscopy,” Proc. SPIE 4400, 61–69 (2001).
[CrossRef]

Niklès, M.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Nordhaus, O.

J. Pelzl, K. Klein, and O. Nordhaus, “Extended Helmholtz resonator in low-temperature photoacoustic spectroscopy,” Appl. Opt. 21, 94–99 (1982).
[CrossRef] [PubMed]

O. Nordhaus and J. Pelzl, “Frequency dependence of resonant photoacoustic cells: the extended Helmholtz resonator,” Appl. Phys. B 25, 221–229 (1981).
[CrossRef]

Parvitte, B.

V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
[CrossRef]

Pellaux, J.-P.

S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458–2461 (2002).
[CrossRef]

Pellegrino, P. M.

D. A. Heaps and P. M. Pellegrino, “Examination of quantum cascade laser source for a MEMS scale photoacoustic chemical sensor,” Proc. SPIE 6218, 621805 (2006).
[CrossRef]

P. M. Pellegrino and R. G. Polcawieh, “Advancement of a MEMS photoacoustic chemical sensor,” Proc. SPIE 5085, 52–63 (2003).
[CrossRef]

Pelzl, J.

J. Pelzl, K. Klein, and O. Nordhaus, “Extended Helmholtz resonator in low-temperature photoacoustic spectroscopy,” Appl. Opt. 21, 94–99 (1982).
[CrossRef] [PubMed]

O. Nordhaus and J. Pelzl, “Frequency dependence of resonant photoacoustic cells: the extended Helmholtz resonator,” Appl. Phys. B 25, 221–229 (1981).
[CrossRef]

Polcawieh, R. G.

P. M. Pellegrino and R. G. Polcawieh, “Advancement of a MEMS photoacoustic chemical sensor,” Proc. SPIE 5085, 52–63 (2003).
[CrossRef]

Ponomarev, Y.

V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
[CrossRef]

V. Zéninari, V. Kapitanov, D. Courtois, and Y. Ponomarev, “Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).
[CrossRef]

Rogne, H.

K. Schjølberg-Henriksen, D. T. Wang, and H. Rogne, “High-resolution pressure sensor for photo acoustic gas detection,” Sens. Actuators A, Phys. 132, 207–213 (2006).
[CrossRef]

Rosset, D.

S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458–2461 (2002).
[CrossRef]

Rouillard, Y.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Salhi, A.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Sanders, J. V.

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, 2001).

Schilt, S.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Schjølberg-Henriksen, K.

K. Schjølberg-Henriksen, D. T. Wang, and H. Rogne, “High-resolution pressure sensor for photo acoustic gas detection,” Sens. Actuators A, Phys. 132, 207–213 (2006).
[CrossRef]

Schmidt, M. A.

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys. 92, 1555–1563 (2002).
[CrossRef]

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system,” J. Microelectromech. Syst. 10, 232–237 (2001).
[CrossRef]

Sigrist, M. W.

Studemann, E.

S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458–2461 (2002).
[CrossRef]

Thévenaz, L.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Vicet, A.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Wang, D. T.

K. Schjølberg-Henriksen, D. T. Wang, and H. Rogne, “High-resolution pressure sensor for photo acoustic gas detection,” Sens. Actuators A, Phys. 132, 207–213 (2006).
[CrossRef]

Werner, R.

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Zéninari, V.

V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
[CrossRef]

V. Zéninari, V. Kapitanov, D. Courtois, and Y. Ponomarev, “Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

O. Nordhaus and J. Pelzl, “Frequency dependence of resonant photoacoustic cells: the extended Helmholtz resonator,” Appl. Phys. B 25, 221–229 (1981).
[CrossRef]

Infrared Phys. Technol. (2)

V. Zéninari, V. Kapitanov, D. Courtois, and Y. Ponomarev, “Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection,” Infrared Phys. Technol. 40, 1–23 (1999).
[CrossRef]

V. Zéninari, B. Parvitte, D. Courtois, V. Kapitanov, and Y. Ponomarev, “Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor,” Infrared Phys. Technol. 44, 253–261 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys. 92, 1555–1563 (2002).
[CrossRef]

J. Microelectromech. Syst. (1)

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection with a microfabricated chemical reactor system,” J. Microelectromech. Syst. 10, 232–237 (2001).
[CrossRef]

Proc. SPIE (3)

C. Hernandez, T. Murray, and S. Krishnaswamy, “Characterization of thin film MEMS using photo-acoustic microscopy,” Proc. SPIE 4400, 61–69 (2001).
[CrossRef]

D. A. Heaps and P. M. Pellegrino, “Examination of quantum cascade laser source for a MEMS scale photoacoustic chemical sensor,” Proc. SPIE 6218, 621805 (2006).
[CrossRef]

P. M. Pellegrino and R. G. Polcawieh, “Advancement of a MEMS photoacoustic chemical sensor,” Proc. SPIE 5085, 52–63 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Barbieri, J.-P. Pellaux, E. Studemann, and D. Rosset, “Gas detection with quantum cascade lasers: An adapted photoacoustic sensor based on Helmholtz resonance,” Rev. Sci. Instrum. 73, 2458–2461 (2002).
[CrossRef]

Sens. Actuators A, Phys. (1)

K. Schjølberg-Henriksen, D. T. Wang, and H. Rogne, “High-resolution pressure sensor for photo acoustic gas detection,” Sens. Actuators A, Phys. 132, 207–213 (2006).
[CrossRef]

Spectrochim. Acta, Part A (1)

M. Mattiello, M. Niklès, S. Schilt, L. Thévenaz, A. Salhi, D. Barat, A. Vicet, Y. Rouillard, R. Werner, and J. Koeth, “Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers,” Spectrochim. Acta, Part A 63, 952–958 (2006).
[CrossRef]

Other (1)

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) OHRPC, original the Helmholtz resonator. The first volume is illuminated by the laser beam without any collimating element. The microphone is placed in the second volume for the detection of the acoustic signal. (b) HRPC, the remodified Helmholtz resonant photoacoustic cell. In Fig. 1(b), the sample excited by laser in the first volume can be exchanged with the outside gases through the thin duct. It not only has the advantages of the model in Fig. 1(a), importantly it makes continuous monitoring possible and has smaller volume.

Fig. 2
Fig. 2

PAS experiment system. Abbreviations: LD, laser driver; TC, temperature controller; HRPC, the remodified Helmholtz resonant photoacoustic cell; PC, personal computer.

Fig. 3
Fig. 3

(a) The remodified Helmholtz resonant photoacoustic cell; (b) the nonresonant photoacoustic cell; (c) the original Helmholtz resonant photoacoustic cell.

Fig. 4
Fig. 4

(a) The average level of the noise signal. (b) The noise spectrum.

Fig. 5
Fig. 5

The relationship between the photoacoustic signal amplitude and the modulated frequency.

Fig. 6
Fig. 6

The photoacoustic signal of the NPC sealed with N 2 / CO 2 mixtures ( CO 2 300 ppm ).

Fig. 7
Fig. 7

The photoacoustic signal amplitude of the NPC sealed with N 2 / CO 2 mixtures ( CO 2 300 ppm ) from the digital lock-in amplifier.

Fig. 8
Fig. 8

Signals for CO 2 concentrations from 300 to 4000 ppm .

Fig. 9
Fig. 9

The relationship between the photoacoustic signal response and the light frequency.

Fig. 10
Fig. 10

The amplitude and frequency response of the OHRPC.

Fig. 11
Fig. 11

The response time of the HRPC.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f = C 0 2 π ( A l eff V r ) 1 / 2 ,
1 V r = 1 V 1 + 1 V 2 .
V r V 1 .
f = C 0 2 π ( A l eff V 1 ) 1 / 2 .
P ppm = P 2 P 1 C 2 C 1 = ( 0.1051 0.06701 ) v ( 4000 300 ) ppm 10.3 μv / ppm .
S CO 2 = S o P ppm = 5 μv 10.3 μv / ppm = 0.485 ppm .

Metrics