Abstract

The mathematical background, simulation, and experimental investigation of an acousto-optic computing environment for high repetition rate data stream processing are proposed in this paper. The prospective similarity of the proposed acousto-optic environment to an electronic field programmable gate arrays is noted.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.Arrathoon, ed., Optical Computing: Digital and Symbolic (Dekker, 1989), p. 432.
  2. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985), p. 471.
  3. N. A. Riza and S. A. Reza, “High-dynamic-range hybrid analog–digital control broadband optical spectral processor using micromirror and acousto-optic devices,” Opt. Lett. 33, 1222–1224 (2008).
    [CrossRef] [PubMed]
  4. N. Goto and Y. Miyazaki, “Recognition of optical layered binary phase shift keying labels using coherent acoustooptic processor for hierarchical photonic routing,” Jpn. J. Appl. Phys. 49, 07HB14 (2010).
    [CrossRef]
  5. A. Y. Lipinskii, A. N. Rudiakova, and V. V. Danilov, “Acoustooptic binary coding based on space-time integration and its application to ultrafast high-resolution digital-analog conversion,” IEEE Photon. Technol. Lett. 20, 2087–2089 (2008).
    [CrossRef]
  6. A. Y. Lipinskii, “Space-time signal representation for the discrete data processing acousto-optic devices,” Data Recording Storage Processing 11, 74–86 (2009) (in Russian).
  7. V. Petrov, “Modern applications of high frequency acoustooptics,” Molecular Quantum Acoustics 24, 135–140 (2003).
  8. Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech recognizer with optimized DRAM access,” IEEE Trans. Circ. Syst. I Regul. Pap. 57, 2119–3131(2010).
    [CrossRef]
  9. D. Wang, M. D. Ercegovac, and N. Zheng, “Design of high-throughput fixed-point complex reciprocal/square-root unit,” IEEE Trans. Circ. Syst. II Express Briefs 57, 627–631(2010).
    [CrossRef]
  10. A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
    [CrossRef]
  11. H. H. Chun and C. K. F. Yiu, “Hybrid reconfigurable architecture for low power digital signal processing system,” in Proceedings of the 2010 International Conference on Green Circuits and Systems (IEEE, 2010), pp. 370–374.

2010 (4)

N. Goto and Y. Miyazaki, “Recognition of optical layered binary phase shift keying labels using coherent acoustooptic processor for hierarchical photonic routing,” Jpn. J. Appl. Phys. 49, 07HB14 (2010).
[CrossRef]

Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech recognizer with optimized DRAM access,” IEEE Trans. Circ. Syst. I Regul. Pap. 57, 2119–3131(2010).
[CrossRef]

D. Wang, M. D. Ercegovac, and N. Zheng, “Design of high-throughput fixed-point complex reciprocal/square-root unit,” IEEE Trans. Circ. Syst. II Express Briefs 57, 627–631(2010).
[CrossRef]

A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
[CrossRef]

2009 (1)

A. Y. Lipinskii, “Space-time signal representation for the discrete data processing acousto-optic devices,” Data Recording Storage Processing 11, 74–86 (2009) (in Russian).

2008 (2)

A. Y. Lipinskii, A. N. Rudiakova, and V. V. Danilov, “Acoustooptic binary coding based on space-time integration and its application to ultrafast high-resolution digital-analog conversion,” IEEE Photon. Technol. Lett. 20, 2087–2089 (2008).
[CrossRef]

N. A. Riza and S. A. Reza, “High-dynamic-range hybrid analog–digital control broadband optical spectral processor using micromirror and acousto-optic devices,” Opt. Lett. 33, 1222–1224 (2008).
[CrossRef] [PubMed]

2003 (1)

V. Petrov, “Modern applications of high frequency acoustooptics,” Molecular Quantum Acoustics 24, 135–140 (2003).

Barnes, R.

A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
[CrossRef]

Carver, J.

A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
[CrossRef]

Choi, J.

Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech recognizer with optimized DRAM access,” IEEE Trans. Circ. Syst. I Regul. Pap. 57, 2119–3131(2010).
[CrossRef]

Choi, Y.

Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech recognizer with optimized DRAM access,” IEEE Trans. Circ. Syst. I Regul. Pap. 57, 2119–3131(2010).
[CrossRef]

Chun, H. H.

H. H. Chun and C. K. F. Yiu, “Hybrid reconfigurable architecture for low power digital signal processing system,” in Proceedings of the 2010 International Conference on Green Circuits and Systems (IEEE, 2010), pp. 370–374.

Danilov, V. V.

A. Y. Lipinskii, A. N. Rudiakova, and V. V. Danilov, “Acoustooptic binary coding based on space-time integration and its application to ultrafast high-resolution digital-analog conversion,” IEEE Photon. Technol. Lett. 20, 2087–2089 (2008).
[CrossRef]

Dasu, A.

A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
[CrossRef]

Ercegovac, M. D.

D. Wang, M. D. Ercegovac, and N. Zheng, “Design of high-throughput fixed-point complex reciprocal/square-root unit,” IEEE Trans. Circ. Syst. II Express Briefs 57, 627–631(2010).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985), p. 471.

Goto, N.

N. Goto and Y. Miyazaki, “Recognition of optical layered binary phase shift keying labels using coherent acoustooptic processor for hierarchical photonic routing,” Jpn. J. Appl. Phys. 49, 07HB14 (2010).
[CrossRef]

Kallam, R.

A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
[CrossRef]

Lipinskii, A. Y.

A. Y. Lipinskii, “Space-time signal representation for the discrete data processing acousto-optic devices,” Data Recording Storage Processing 11, 74–86 (2009) (in Russian).

A. Y. Lipinskii, A. N. Rudiakova, and V. V. Danilov, “Acoustooptic binary coding based on space-time integration and its application to ultrafast high-resolution digital-analog conversion,” IEEE Photon. Technol. Lett. 20, 2087–2089 (2008).
[CrossRef]

Miyazaki, Y.

N. Goto and Y. Miyazaki, “Recognition of optical layered binary phase shift keying labels using coherent acoustooptic processor for hierarchical photonic routing,” Jpn. J. Appl. Phys. 49, 07HB14 (2010).
[CrossRef]

Petrov, V.

V. Petrov, “Modern applications of high frequency acoustooptics,” Molecular Quantum Acoustics 24, 135–140 (2003).

Reza, S. A.

Riza, N. A.

Rudiakova, A. N.

A. Y. Lipinskii, A. N. Rudiakova, and V. V. Danilov, “Acoustooptic binary coding based on space-time integration and its application to ultrafast high-resolution digital-analog conversion,” IEEE Photon. Technol. Lett. 20, 2087–2089 (2008).
[CrossRef]

Sudarsanam, A.

A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
[CrossRef]

Sung, W.

Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech recognizer with optimized DRAM access,” IEEE Trans. Circ. Syst. I Regul. Pap. 57, 2119–3131(2010).
[CrossRef]

Wang, D.

D. Wang, M. D. Ercegovac, and N. Zheng, “Design of high-throughput fixed-point complex reciprocal/square-root unit,” IEEE Trans. Circ. Syst. II Express Briefs 57, 627–631(2010).
[CrossRef]

Yiu, C. K. F.

H. H. Chun and C. K. F. Yiu, “Hybrid reconfigurable architecture for low power digital signal processing system,” in Proceedings of the 2010 International Conference on Green Circuits and Systems (IEEE, 2010), pp. 370–374.

You, K.

Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech recognizer with optimized DRAM access,” IEEE Trans. Circ. Syst. I Regul. Pap. 57, 2119–3131(2010).
[CrossRef]

Zheng, N.

D. Wang, M. D. Ercegovac, and N. Zheng, “Design of high-throughput fixed-point complex reciprocal/square-root unit,” IEEE Trans. Circ. Syst. II Express Briefs 57, 627–631(2010).
[CrossRef]

Data Recording Storage Processing (1)

A. Y. Lipinskii, “Space-time signal representation for the discrete data processing acousto-optic devices,” Data Recording Storage Processing 11, 74–86 (2009) (in Russian).

IEEE Photon. Technol. Lett. (1)

A. Y. Lipinskii, A. N. Rudiakova, and V. V. Danilov, “Acoustooptic binary coding based on space-time integration and its application to ultrafast high-resolution digital-analog conversion,” IEEE Photon. Technol. Lett. 20, 2087–2089 (2008).
[CrossRef]

IEEE Trans. Circ. Syst. I Regul. Pap. (1)

Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech recognizer with optimized DRAM access,” IEEE Trans. Circ. Syst. I Regul. Pap. 57, 2119–3131(2010).
[CrossRef]

IEEE Trans. Circ. Syst. II Express Briefs (1)

D. Wang, M. D. Ercegovac, and N. Zheng, “Design of high-throughput fixed-point complex reciprocal/square-root unit,” IEEE Trans. Circ. Syst. II Express Briefs 57, 627–631(2010).
[CrossRef]

IET Comput. Digit. Tech. (1)

A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfigurable systolic array accelerators: A case study with extended Kalman filter and discrete wavelet transform algorithms,” IET Comput. Digit. Tech. 4, 126–142(2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Goto and Y. Miyazaki, “Recognition of optical layered binary phase shift keying labels using coherent acoustooptic processor for hierarchical photonic routing,” Jpn. J. Appl. Phys. 49, 07HB14 (2010).
[CrossRef]

Molecular Quantum Acoustics (1)

V. Petrov, “Modern applications of high frequency acoustooptics,” Molecular Quantum Acoustics 24, 135–140 (2003).

Opt. Lett. (1)

Other (3)

R.Arrathoon, ed., Optical Computing: Digital and Symbolic (Dekker, 1989), p. 432.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985), p. 471.

H. H. Chun and C. K. F. Yiu, “Hybrid reconfigurable architecture for low power digital signal processing system,” in Proceedings of the 2010 International Conference on Green Circuits and Systems (IEEE, 2010), pp. 370–374.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Rectangular functions Π ( t / ε S ) and Π ( t / ε L ) , (b) the s ( t , x ) , u in ( t , z ) , and u out ( t , x , z ) signal representation.

Fig. 2
Fig. 2

Block diagram of experimental setup.

Fig. 3
Fig. 3

Functional model of the experimental setup. AOM block is shown in detail.

Fig. 4
Fig. 4

Simulation results: (a)  { 1111 } acoustic and light patterns; (b)  { 1001 } , (c)  { 1010 } , and (d)  { 1011 } acoustic and { 1000 } light patterns.

Fig. 5
Fig. 5

Experimental results.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = k s ^ ( k ) · Π ( [ t k τ S ] / ε S ) ,
u in ( t ) = n u ^ in ( n ) · Π ( [ t n τ L ] / ε L ) ,
s ( t , x / V ) = k s ^ ( k ) · Π ( [ t k τ S x / V ] / ε S ) , u in ( t , z / c ) = n u ^ in ( n ) · Π ( [ t n τ L z / c ] / ε L ) ,
u out ( t , x V , z c ) = n k = { V n τ L W V τ S , 0 , n τ L > W V n τ L W / V     k = n τ L / τ S [ s ^ ( k ) · u ^ in ( n ) · Π ( t k τ S x / V ε S ) · Π ( t n τ L z / c ε L ) ] .
s i = { s i M x 1 , , s i 1 , s i } T ,
u out i = K 1 s t · [ { s i 0 s i 1 0 s i M x 1 } × u in i ] ,

Metrics