Abstract

A dual-wavelength single-longitudinal-mode erbium-doped fiber ring laser, comprising an inverse- Gaussian apodized fiber Bragg grating (IGAFBG) with two passbands and a saturable absorber, is proposed. The wavelength spacing between the two lasing lines can be continuously tuned by changing the wavelength spacing of the two passbands of the IGAFBG, which can be realized by adding a tunable linear chirp in the grating using a cantilever. By heterodyning the two lasing lines at a photodetector, a microwave signal with a tunable frequency is achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [CrossRef]
  3. R. C. Williamson, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
    [CrossRef]
  4. Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
    [CrossRef]
  5. L. Xia, P. Shum, and T. H. Cheng, “Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing,” Appl. Phys. B 86, 61–64 (2006).
    [CrossRef]
  6. X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30, 2068–2070 (2005).
    [CrossRef] [PubMed]
  7. X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
    [CrossRef]
  8. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
    [CrossRef]
  9. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
    [CrossRef]
  10. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17, 21773–21781 (2009).
    [CrossRef] [PubMed]
  11. B. Lin, S. C. Tjin, H. Zhang, D. Tang, J. Hao, B. Dong, and S. Liang, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier,” Appl. Opt. 49, 6855–6860 (2010).
    [CrossRef] [PubMed]
  12. B. Lin, S. C. Tjin, H. Zhang, D. Tang, S. Liang, J. Hao, and B. Dong, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on inverse-Gaussian apodized fiber Bragg grating and its application in microwave generation,” Opt. Fiber Technol. 17, 120–123 (2011).
    [CrossRef]
  13. S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop,” Opt. Commun. 282, 2165–2168 (2009).
    [CrossRef]
  14. W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455–4459 (2009).
    [CrossRef]
  15. G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
    [CrossRef]
  16. B. Lin, H. Zhang, S. C. Tjin, D. Tang, J. Hao, C. M. Tay, and S. Liang, “Inverse-Gaussian apodized fiber Bragg grating for dual wavelength lasing,” Appl. Opt. 49, 1373–1377(2010).
    [CrossRef] [PubMed]
  17. B. Lin, S. C. Tjin, N. Q. Ngo, Y. Song, S. Liang, L. Xia, and M. Jiang, “Analysis of inverse-Gaussian apodized fiber Bragg grating,” Appl. Opt. 49, 4715–4722 (2010).
    [CrossRef] [PubMed]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  19. X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, “A largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11, 2970–2974 (2003).
    [CrossRef] [PubMed]
  20. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
    [CrossRef]
  21. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Opt. Express 16, 14173–14179 (2008).
    [CrossRef] [PubMed]

2011 (1)

B. Lin, S. C. Tjin, H. Zhang, D. Tang, S. Liang, J. Hao, and B. Dong, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on inverse-Gaussian apodized fiber Bragg grating and its application in microwave generation,” Opt. Fiber Technol. 17, 120–123 (2011).
[CrossRef]

2010 (4)

2009 (3)

2008 (4)

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

R. C. Williamson, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
[CrossRef]

K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Opt. Express 16, 14173–14179 (2008).
[CrossRef] [PubMed]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

2006 (4)

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

L. Xia, P. Shum, and T. H. Cheng, “Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing,” Appl. Phys. B 86, 61–64 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[CrossRef]

2005 (1)

2003 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1996 (1)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Andres, M. V.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Chan, C. C.

Chen, D.

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455–4459 (2009).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Chen, X.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30, 2068–2070 (2005).
[CrossRef] [PubMed]

Cheng, T. H.

L. Xia, P. Shum, and T. H. Cheng, “Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing,” Appl. Phys. B 86, 61–64 (2006).
[CrossRef]

Cheng, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Cruz, J. L.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Dai, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Deng, Z.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30, 2068–2070 (2005).
[CrossRef] [PubMed]

Dong, B.

B. Lin, S. C. Tjin, H. Zhang, D. Tang, S. Liang, J. Hao, and B. Dong, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on inverse-Gaussian apodized fiber Bragg grating and its application in microwave generation,” Opt. Fiber Technol. 17, 120–123 (2011).
[CrossRef]

B. Lin, S. C. Tjin, H. Zhang, D. Tang, J. Hao, B. Dong, and S. Liang, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier,” Appl. Opt. 49, 6855–6860 (2010).
[CrossRef] [PubMed]

Dong, X.

Dong, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Fang, X.

Feng, S.

S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop,” Opt. Commun. 282, 2165–2168 (2009).
[CrossRef]

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Hao, J.

He, S.

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455–4459 (2009).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

He, X.

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Jian, S.

S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop,” Opt. Commun. 282, 2165–2168 (2009).
[CrossRef]

Jiang, M.

Kang, J. U.

Liang, S.

Liao, C.

Lin, B.

Liu, W.

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455–4459 (2009).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Lu, S.

S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop,” Opt. Commun. 282, 2165–2168 (2009).
[CrossRef]

Marti, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Ng, J. H.

Ngo, N. Q.

Ning, T.

S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop,” Opt. Commun. 282, 2165–2168 (2009).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Palaci, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Perez-Millan, P.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Seeds, A. J.

Shum, P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

L. Xia, P. Shum, and T. H. Cheng, “Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing,” Appl. Phys. B 86, 61–64 (2006).
[CrossRef]

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, “A largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11, 2970–2974 (2003).
[CrossRef] [PubMed]

Song, Y.

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Sun, J.

Tang, D.

Tay, C. M.

Tjin, S. C.

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Villanueva, G. E.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Wang, D. N.

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

Williams, K. J.

Williamson, R. C.

Xia, L.

B. Lin, S. C. Tjin, N. Q. Ngo, Y. Song, S. Liang, L. Xia, and M. Jiang, “Analysis of inverse-Gaussian apodized fiber Bragg grating,” Appl. Opt. 49, 4715–4722 (2010).
[CrossRef] [PubMed]

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

L. Xia, P. Shum, and T. H. Cheng, “Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing,” Appl. Phys. B 86, 61–64 (2006).
[CrossRef]

Xie, S.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Xu, O.

S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop,” Opt. Commun. 282, 2165–2168 (2009).
[CrossRef]

Yao, J.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30, 2068–2070 (2005).
[CrossRef] [PubMed]

Yao, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Zhang, H.

Zhang, K.

Zhao, C.

Zhou, J. L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

L. Xia, P. Shum, and T. H. Cheng, “Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing,” Appl. Phys. B 86, 61–64 (2006).
[CrossRef]

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91, 99–103 (2008).
[CrossRef]

Electron. Lett. (1)

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 459–461 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory Tech. 54, 804–809 (2006).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Opt. Commun. (1)

S. Feng, O. Xu, S. Lu, T. Ning, and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop,” Opt. Commun. 282, 2165–2168 (2009).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

B. Lin, S. C. Tjin, H. Zhang, D. Tang, S. Liang, J. Hao, and B. Dong, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on inverse-Gaussian apodized fiber Bragg grating and its application in microwave generation,” Opt. Fiber Technol. 17, 120–123 (2011).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated transmission spectra of IGAFBGs at (a) 0 (b) 0.1 (c) 0.2, and (d)  0.25 nm / cm chirp rate, with different wavelength spacings. In simulation, n eff = 1.44717 , Λ = 532.5 nm , δ n eff ¯ = 3.6 × 10 4 , and L = 9 m m .

Fig. 2
Fig. 2

Schematic diagram of the proposed fiber ring laser. The inset is the mechanism structure of the right-angle triangular cantilever with an IGAFBG bonded on it.

Fig. 3
Fig. 3

Measured transmission spectra of IGAFBGs under different forces loaded on the free end of the cantilever, with wavelength spacings of (a)  0.192 nm , (b)  0.182 nm , (c)  0.17 nm , and (d)  0.16 nm of the dual passbands.

Fig. 4
Fig. 4

Measured output laser spectra when dif ferent forces are applied on the free end of the cantilever, with wavelength spacings of (a)  0.192 nm , (b)  0.182 nm , (c)  0.17 nm , and (d)  0.16 nm of the two lasing lines.

Fig. 5
Fig. 5

(a) Lasing spectra taken at a 6 min interval during 1 h when no force is applied on the cantilever (b) Output power fluctuation at each lasing line.

Fig. 6
Fig. 6

Electrical spectrum of the beat signal. (a)  40 GHz span with resolution of 3 MHz (b)  10 MHz span with resolution of 100 kHz .

Fig. 7
Fig. 7

Electrical spectra of the beat signals at 24.196, 22.96, 21.44, and 20.16 GHz , corresponding to the wavelength spacings as shown in Fig. 4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( z ) = 1 exp [ 4 ( ln 2 ) z 2 ( L / 3 ) 2 ] ,
V ( z ) = 0.03 A ( z ) + 0.1 mm / s .

Metrics