Abstract

Based on the infrared optical material germanium, in the basic structural unit of a two-dimensional decagonal photonic quasi-crystal, photonic bandgaps of four square unit cells with a scattering radius in the range of [0,0.3a] have been calculated within two cases of construction (i.e., air cylinders arranged in germanium and germanium cylinders arranged in air) by using the plane wave expansion method. In considering the Bragg-like scattering effect in two-dimensional photonic quasi-crystals as the elastic collision in physics, we put forward the photonic bandgap impact function F=q1q2q3επr2 for the first time, to the best of our knowledge. A certain unit cell structure shares some similar photonic bandgap properties with a periodic structure. For a certain structure of the unit cell, the center frequency change trends of the photonic bandgap and the type of photonic bandgap generated are not related with the period of the photonic crystal, but with the relative dielectric constant and the construction, respectively. Different unit cell structures own different photonic bandgap structures. This occurs because the high degree of rotational symmetry of the quasi-periodic structure and weak long-range order of the basic structural unit lead to different Bragg-like scattering effects within the unit cell structures.

© 2011 Optical Society of America

Full Article  |  PDF Article
Related Articles
Correlation between single-cylinder properties and bandgap formation in photonic structures

Carsten Rockstuhl, Ulf Peschel, and Falk Lederer
Opt. Lett. 31(11) 1741-1743 (2006)

Mode localization and band-gap formation in defect-free photonic quasicrystals

Khaled Mnaymneh and Robert C. Gauthier
Opt. Express 15(8) 5089-5099 (2007)

Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals

Yi Yang and Guo Ping Wang
Opt. Express 15(10) 5991-5996 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription