Abstract

Off-axis digital holography typically uses a beam splitter to combine reference and object waves at an angle matched to the sampling period of the sensor array. The beam splitter determines the thickness of the recording system. This paper describes and demonstrates a total internal reflection hologram that replaces the beam splitter and enables hologram recording over a large aperture with a thin camera.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [CrossRef]
  2. K. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11, 225–226 (1967).
    [CrossRef]
  3. J. Upatnieks, “Method and apparatus for recording and displaying edge-illuminated holograms,” U.S. patent 4,643,515 (17 February 1987).
  4. J. Upatnieks, “Compact hologram display and method of making compact hologram,” U.S. patent 5,151,800 (29 September 1992).
  5. J. Upatnieks, “Edge-illuminated hologram,” Appl. Opt. 31, 1048–1052 (1992).
    [CrossRef] [PubMed]
  6. N. J. Phillips, C. Wang, and Z. Coleman, “Holograms in the edge-illuminated geometry—new materials developments,” Proc. SPIE 1914, 75–81 (1993).
    [CrossRef]
  7. Z. A. Coleman, M. H. Metz, and N. J. Phillips, “Holograms in the extreme edge illumination geometry,” Proc. SPIE 2688, 96–108 (1996).
    [CrossRef]
  8. Integraf, “PFG-01 holographic plates technical specifications,” http://www.integraf.com/Downloads/PFG-01.pdf.
  9. H. I. Bjelkhagen, Silver-Halide Recording Materials: for Holography and Their Processing (Springer-Verlag, 1993).
  10. K. Biedermann, “Silver halide photographic materials,” in Holographic Recording Materials, H.M.Smith, ed. (Springer-Verlag, 1977), pp. 21–74.
  11. G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer, 2000), pp. 21–62.
  12. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
    [CrossRef]

1996 (1)

Z. A. Coleman, M. H. Metz, and N. J. Phillips, “Holograms in the extreme edge illumination geometry,” Proc. SPIE 2688, 96–108 (1996).
[CrossRef]

1993 (1)

N. J. Phillips, C. Wang, and Z. Coleman, “Holograms in the edge-illuminated geometry—new materials developments,” Proc. SPIE 1914, 75–81 (1993).
[CrossRef]

1992 (1)

1967 (1)

K. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11, 225–226 (1967).
[CrossRef]

1962 (1)

Barbastathis, G.

G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer, 2000), pp. 21–62.

Biedermann, K.

K. Biedermann, “Silver halide photographic materials,” in Holographic Recording Materials, H.M.Smith, ed. (Springer-Verlag, 1977), pp. 21–74.

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials: for Holography and Their Processing (Springer-Verlag, 1993).

Brady, D. J.

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
[CrossRef]

Coleman, Z.

N. J. Phillips, C. Wang, and Z. Coleman, “Holograms in the edge-illuminated geometry—new materials developments,” Proc. SPIE 1914, 75–81 (1993).
[CrossRef]

Coleman, Z. A.

Z. A. Coleman, M. H. Metz, and N. J. Phillips, “Holograms in the extreme edge illumination geometry,” Proc. SPIE 2688, 96–108 (1996).
[CrossRef]

Leith, E. N.

Metz, M. H.

Z. A. Coleman, M. H. Metz, and N. J. Phillips, “Holograms in the extreme edge illumination geometry,” Proc. SPIE 2688, 96–108 (1996).
[CrossRef]

Phillips, N. J.

Z. A. Coleman, M. H. Metz, and N. J. Phillips, “Holograms in the extreme edge illumination geometry,” Proc. SPIE 2688, 96–108 (1996).
[CrossRef]

N. J. Phillips, C. Wang, and Z. Coleman, “Holograms in the edge-illuminated geometry—new materials developments,” Proc. SPIE 1914, 75–81 (1993).
[CrossRef]

Psaltis, D.

G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer, 2000), pp. 21–62.

Stetson, K.

K. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11, 225–226 (1967).
[CrossRef]

Upatnieks, J.

J. Upatnieks, “Edge-illuminated hologram,” Appl. Opt. 31, 1048–1052 (1992).
[CrossRef] [PubMed]

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
[CrossRef]

J. Upatnieks, “Compact hologram display and method of making compact hologram,” U.S. patent 5,151,800 (29 September 1992).

J. Upatnieks, “Method and apparatus for recording and displaying edge-illuminated holograms,” U.S. patent 4,643,515 (17 February 1987).

Wang, C.

N. J. Phillips, C. Wang, and Z. Coleman, “Holograms in the edge-illuminated geometry—new materials developments,” Proc. SPIE 1914, 75–81 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11, 225–226 (1967).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. SPIE (2)

N. J. Phillips, C. Wang, and Z. Coleman, “Holograms in the edge-illuminated geometry—new materials developments,” Proc. SPIE 1914, 75–81 (1993).
[CrossRef]

Z. A. Coleman, M. H. Metz, and N. J. Phillips, “Holograms in the extreme edge illumination geometry,” Proc. SPIE 2688, 96–108 (1996).
[CrossRef]

Other (7)

Integraf, “PFG-01 holographic plates technical specifications,” http://www.integraf.com/Downloads/PFG-01.pdf.

H. I. Bjelkhagen, Silver-Halide Recording Materials: for Holography and Their Processing (Springer-Verlag, 1993).

K. Biedermann, “Silver halide photographic materials,” in Holographic Recording Materials, H.M.Smith, ed. (Springer-Verlag, 1977), pp. 21–74.

G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer, 2000), pp. 21–62.

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
[CrossRef]

J. Upatnieks, “Method and apparatus for recording and displaying edge-illuminated holograms,” U.S. patent 4,643,515 (17 February 1987).

J. Upatnieks, “Compact hologram display and method of making compact hologram,” U.S. patent 5,151,800 (29 September 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematics of (a) a conventional digital hologram setup with a collimator and a beam splitter and (b) a compact setup with a TIR hologram plate with an optical fiber guided input. FPA, focal plane array.

Fig. 2
Fig. 2

Ilustration of a TIR hologram module.

Fig. 3
Fig. 3

(a) Structure of the TIR hologram plate with associated optics, and (b) a photograph of a CMOS sensor is attached to the TIR hologram.

Fig. 4
Fig. 4

Dimensions of the module with (a) front view and (b) cross-sectional view.

Fig. 5
Fig. 5

Reference wave retrieved by TIR hologram plate and its (a) intensity profile and (b) phase profile.

Fig. 6
Fig. 6

(a) Fourier transform of the retrieved reference U R ( x , y ) , its cross section along (b) the f x axis and (c) the f y axis. Here, the amplitude value of the band in the vertical axis is represented in arbitrary units.

Fig. 7
Fig. 7

Experimental setup for off-axis digital holography with TIR hologram plate.

Fig. 8
Fig. 8

(a) Measured off-axis hologram, I H ( x , y ) , (b) Fourier transform of off-axis hologram, F { I H ( x , y ) } , and (c) the subtraction between the Fourier transforms of the off-axis hologram and the intensity of a reference wave, F { I H ( x , y ) } F { I R ( x , y ) } .

Fig. 9
Fig. 9

Reconstruction images (a) before and (b) after elimination of irregular intensity and phase aberration of reference wave, and (c) a photograph of the object.

Fig. 10
Fig. 10

Reference wave retrieved by the TIR hologram plate with (a) intensity profile and (b) phase profile.

Fig. 11
Fig. 11

(a) Experimental setup for off-axis digital holography with the TIR hologram plate for imaging a 3D object and (b) the 3D object with symbols “×” and “+” at different distances.

Fig. 12
Fig. 12

(a) Measured off-axis hologram, I H ( x , y ) , (b) Fourier transform of off-axis hologram, F { I H ( x , y ) } , and (c) the subtraction between the Fourier transforms of the off-axis hologram and the intensity of a reference wave, F { I H ( x , y ) } F { I R ( x , y ) } .

Fig. 13
Fig. 13

Reconstruction images before and after elimination of the irregular intensity and phase aberration of reference wave. (a) and (b) show the reconstruction images before elimination at distances z = 292 mm and z = 322 mm , respectively. (c) and (d) show the reconstruction images after elimination at distances z = 292 mm and z = 322 mm , respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U R ( x , y ) = I R ( x , y ) exp { j ϕ R ( x , y ) } .
I H ( x , y ) = | U R ( x , y ) + U O ( x , y ) | 2 = I R ( x , y ) + | U O ( x , y ) | 2 + 2 Re { U R * ( x , y ) U O ( x , y ) } .
B x = B y = 1 / 2 p .
F { I H ( x , y ) } = F { I R ( x , y ) } + F { | U O ( x , y ) | 2 } + F { 2 Re { U R * ( x , y ) U O ( x , y ) } } .
B O = { B F / 2 B R / 2 for     0 B R < B F / 3 B F 2 B R for     B F / 3 B R B F / 2 .
U O ( x , y ; z ) = U O ( x , y ; z ) h ( x , y ; z z ) ,
F { h ( x , y ; z z ) } = exp [ j ( z z ) k 2 k x 2 k y 2 ] .

Metrics