Abstract

We report on the spectral properties for above-threshold operation of broadly tunable, asymmetric multiple quantum well (AMQW), coupled-cavity InGaAsP/InP semiconductor diode lasers. We developed a traveling wave model to understand the mode selection that the lasers exhibit. We find that a weak, short external cavity (SXC) can be used to obtain single frequency operation on each longitudinal mode over the 100nm tuning range of the uncoated AMQW coupled-cavity lasers. We measured the spectral properties of AMQW coupled-cavity lasers with and without an SXC. In a synthesized optical co herent optical tomography application, the use of an SXC with an AMQW coupled-cavity laser reduces the coherence length and hence enhances the performance of the AMQW coupled-cavity laser for optical coherence tomography applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Manger and H. Rothe, “Selection of axial modes in optical masers,” Phys. Lett. 7 (5), 330–331 (1963).
    [CrossRef]
  2. L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers- part 1: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659–670 (1984).
    [CrossRef]
  3. W. T. Tsang, “The Cleaved-Coupled-Cavity (C3) lasers,” in Semiconductors and Semimetals, W.T.Tsang, ed. (Academic, 1985), Vol.  22, Ch. 5.
  4. V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 55, 2091–2096 (1999).
    [CrossRef]
  5. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426–430 (2003).
    [CrossRef]
  6. F. K. Khan, J. Wang, and D. T. Cassidy, “Coupled cavity InGaAsP/InP laser for synthetic optical coherence tomography and other applications,” IET Optoelectron. 4, 25–35 (2010).
    [CrossRef]
  7. G. B. Morrison, S. C. Woodworth, H. Wang, and D. T. Cassidy, “Galerkin method for calculating valence band wavefunctions in quantum- well structures using exact envelope theory,” IEEE J. Quantum Electron. 40, 222–230 (2004).
    [CrossRef]
  8. M. J. Hamp and D. T. Cassidy, “Experimental and theoretical analysis of the carrier distribution in asymmetric multiple quantum-well InGaAsP lasers,” IEEE J. Quantum Electron. 37, 92–99 (2001).
    [CrossRef]
  9. D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode laser,” J. Mod. Opt. 46, 1071–1078 (1999).
  10. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6 (6), 978–987 (2000).
    [CrossRef]
  11. C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
    [CrossRef]
  12. F. K. Khan and D. T. Cassidy, “Widely tunable coupled-cavity semiconductor laser,” Appl. Opt. 48, 3809–3817 (2009).
    [CrossRef] [PubMed]
  13. L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groove coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679–1688 (1982).
    [CrossRef]
  14. H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385–393 (1984).
    [CrossRef]
  15. K. J. Ebeling and L. A. Coldren, “Analysis of multi element semiconductor laser,” J. Appl. Phys. 54, 2962–2969 (1983).
    [CrossRef]
  16. D. T. Cassidy, “Comparison of rate equation and Fabry-Perot approaches to modeling a diode laser,” Appl. Opt. 22, 3321–3326 (1983).
    [CrossRef] [PubMed]
  17. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
    [CrossRef]
  18. D. V. Griffiths and I. M. Smith, Numerical Methods for Engineers (CRC Press, 1991), Chap. 7, 1st ed..
  19. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang, ed. (Wiley, 1995), Chap. 3.
  20. J. W. Goodman, Statistical Optics (Wiley, 1985), Ch. 5.
  21. D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
    [CrossRef] [PubMed]
  22. K. Hotate and O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” J. Lightwave Technol. 11, 1701–1710 (1993).
    [CrossRef]
  23. D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988).
    [CrossRef] [PubMed]
  24. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in external cavity,” Appl. Opt. 40, 6719–6724 (2001).
    [CrossRef]
  25. S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
    [CrossRef]

2010

F. K. Khan, J. Wang, and D. T. Cassidy, “Coupled cavity InGaAsP/InP laser for synthetic optical coherence tomography and other applications,” IET Optoelectron. 4, 25–35 (2010).
[CrossRef]

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

2009

C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

F. K. Khan and D. T. Cassidy, “Widely tunable coupled-cavity semiconductor laser,” Appl. Opt. 48, 3809–3817 (2009).
[CrossRef] [PubMed]

2004

G. B. Morrison, S. C. Woodworth, H. Wang, and D. T. Cassidy, “Galerkin method for calculating valence band wavefunctions in quantum- well structures using exact envelope theory,” IEEE J. Quantum Electron. 40, 222–230 (2004).
[CrossRef]

2003

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426–430 (2003).
[CrossRef]

2001

M. J. Hamp and D. T. Cassidy, “Experimental and theoretical analysis of the carrier distribution in asymmetric multiple quantum-well InGaAsP lasers,” IEEE J. Quantum Electron. 37, 92–99 (2001).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in external cavity,” Appl. Opt. 40, 6719–6724 (2001).
[CrossRef]

2000

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6 (6), 978–987 (2000).
[CrossRef]

1999

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode laser,” J. Mod. Opt. 46, 1071–1078 (1999).

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 55, 2091–2096 (1999).
[CrossRef]

1993

K. Hotate and O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” J. Lightwave Technol. 11, 1701–1710 (1993).
[CrossRef]

1991

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

1988

1984

H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385–393 (1984).
[CrossRef]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers- part 1: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659–670 (1984).
[CrossRef]

1983

K. J. Ebeling and L. A. Coldren, “Analysis of multi element semiconductor laser,” J. Appl. Phys. 54, 2962–2969 (1983).
[CrossRef]

D. T. Cassidy, “Comparison of rate equation and Fabry-Perot approaches to modeling a diode laser,” Appl. Opt. 22, 3321–3326 (1983).
[CrossRef] [PubMed]

1982

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groove coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679–1688 (1982).
[CrossRef]

1963

H. Manger and H. Rothe, “Selection of axial modes in optical masers,” Phys. Lett. 7 (5), 330–331 (1963).
[CrossRef]

Amann, M. C.

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

Bonnell, L. J.

Cassidy, D. T.

F. K. Khan, J. Wang, and D. T. Cassidy, “Coupled cavity InGaAsP/InP laser for synthetic optical coherence tomography and other applications,” IET Optoelectron. 4, 25–35 (2010).
[CrossRef]

F. K. Khan and D. T. Cassidy, “Widely tunable coupled-cavity semiconductor laser,” Appl. Opt. 48, 3809–3817 (2009).
[CrossRef] [PubMed]

G. B. Morrison, S. C. Woodworth, H. Wang, and D. T. Cassidy, “Galerkin method for calculating valence band wavefunctions in quantum- well structures using exact envelope theory,” IEEE J. Quantum Electron. 40, 222–230 (2004).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426–430 (2003).
[CrossRef]

M. J. Hamp and D. T. Cassidy, “Experimental and theoretical analysis of the carrier distribution in asymmetric multiple quantum-well InGaAsP lasers,” IEEE J. Quantum Electron. 37, 92–99 (2001).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in external cavity,” Appl. Opt. 40, 6719–6724 (2001).
[CrossRef]

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode laser,” J. Mod. Opt. 46, 1071–1078 (1999).

D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988).
[CrossRef] [PubMed]

D. T. Cassidy, “Comparison of rate equation and Fabry-Perot approaches to modeling a diode laser,” Appl. Opt. 22, 3321–3326 (1983).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6 (6), 978–987 (2000).
[CrossRef]

Chase, C.

C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

Choi, H. K.

H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385–393 (1984).
[CrossRef]

Coldren, L. A.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers- part 1: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659–670 (1984).
[CrossRef]

K. J. Ebeling and L. A. Coldren, “Analysis of multi element semiconductor laser,” J. Appl. Phys. 54, 2962–2969 (1983).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groove coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679–1688 (1982).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang, ed. (Wiley, 1995), Chap. 3.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang, ed. (Wiley, 1995), Chap. 3.

Ebeling, K. J.

K. J. Ebeling and L. A. Coldren, “Analysis of multi element semiconductor laser,” J. Appl. Phys. 54, 2962–2969 (1983).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Furya, K.

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groove coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679–1688 (1982).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985), Ch. 5.

Gregory, K.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Griffiths, D. V.

D. V. Griffiths and I. M. Smith, Numerical Methods for Engineers (CRC Press, 1991), Chap. 7, 1st ed..

Hamp, M. J.

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426–430 (2003).
[CrossRef]

M. J. Hamp and D. T. Cassidy, “Experimental and theoretical analysis of the carrier distribution in asymmetric multiple quantum-well InGaAsP lasers,” IEEE J. Quantum Electron. 37, 92–99 (2001).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in external cavity,” Appl. Opt. 40, 6719–6724 (2001).
[CrossRef]

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode laser,” J. Mod. Opt. 46, 1071–1078 (1999).

Hec, M. R.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Hotate, K.

K. Hotate and O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” J. Lightwave Technol. 11, 1701–1710 (1993).
[CrossRef]

Hotte, T.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Huang, M.

C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

Kamatani, O.

K. Hotate and O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” J. Lightwave Technol. 11, 1701–1710 (1993).
[CrossRef]

Khan, F. K.

F. K. Khan, J. Wang, and D. T. Cassidy, “Coupled cavity InGaAsP/InP laser for synthetic optical coherence tomography and other applications,” IET Optoelectron. 4, 25–35 (2010).
[CrossRef]

F. K. Khan and D. T. Cassidy, “Widely tunable coupled-cavity semiconductor laser,” Appl. Opt. 48, 3809–3817 (2009).
[CrossRef] [PubMed]

Koch, T. L.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers- part 1: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659–670 (1984).
[CrossRef]

Kogel, B.

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

Kononeko, V. K.

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 55, 2091–2096 (1999).
[CrossRef]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

Lin, C. P.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Manak, L. S.

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 55, 2091–2096 (1999).
[CrossRef]

Manger, H.

H. Manger and H. Rothe, “Selection of axial modes in optical masers,” Phys. Lett. 7 (5), 330–331 (1963).
[CrossRef]

Maute, M.

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

Meissner, P.

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

Miller, B. I.

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groove coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679–1688 (1982).
[CrossRef]

Morrison, G. B.

G. B. Morrison, S. C. Woodworth, H. Wang, and D. T. Cassidy, “Galerkin method for calculating valence band wavefunctions in quantum- well structures using exact envelope theory,” IEEE J. Quantum Electron. 40, 222–230 (2004).
[CrossRef]

Nalivko, S. V.

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 55, 2091–2096 (1999).
[CrossRef]

Protasio, R.

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

Puliafito, C. A.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Rentsheller, J. A.

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groove coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679–1688 (1982).
[CrossRef]

Rothe, H.

H. Manger and H. Rothe, “Selection of axial modes in optical masers,” Phys. Lett. 7 (5), 330–331 (1963).
[CrossRef]

Schilt, S.

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

Smith, I. M.

D. V. Griffiths and I. M. Smith, Numerical Methods for Engineers (CRC Press, 1991), Chap. 7, 1st ed..

Stinson, W. G.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Tsang, W. T.

W. T. Tsang, “The Cleaved-Coupled-Cavity (C3) lasers,” in Semiconductors and Semimetals, W.T.Tsang, ed. (Academic, 1985), Vol.  22, Ch. 5.

Wang, H.

G. B. Morrison, S. C. Woodworth, H. Wang, and D. T. Cassidy, “Galerkin method for calculating valence band wavefunctions in quantum- well structures using exact envelope theory,” IEEE J. Quantum Electron. 40, 222–230 (2004).
[CrossRef]

Wang, J.

F. K. Khan, J. Wang, and D. T. Cassidy, “Coupled cavity InGaAsP/InP laser for synthetic optical coherence tomography and other applications,” IET Optoelectron. 4, 25–35 (2010).
[CrossRef]

Woodworth, S. C.

G. B. Morrison, S. C. Woodworth, H. Wang, and D. T. Cassidy, “Galerkin method for calculating valence band wavefunctions in quantum- well structures using exact envelope theory,” IEEE J. Quantum Electron. 40, 222–230 (2004).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426–430 (2003).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in external cavity,” Appl. Opt. 40, 6719–6724 (2001).
[CrossRef]

Zhou, Y.

C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

Zogal, K.

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M. C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 321–329(2010).
[CrossRef]

IEEE J. Quantum Electron.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers- part 1: Threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659–670 (1984).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426–430 (2003).
[CrossRef]

G. B. Morrison, S. C. Woodworth, H. Wang, and D. T. Cassidy, “Galerkin method for calculating valence band wavefunctions in quantum- well structures using exact envelope theory,” IEEE J. Quantum Electron. 40, 222–230 (2004).
[CrossRef]

M. J. Hamp and D. T. Cassidy, “Experimental and theoretical analysis of the carrier distribution in asymmetric multiple quantum-well InGaAsP lasers,” IEEE J. Quantum Electron. 37, 92–99 (2001).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groove coupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679–1688 (1982).
[CrossRef]

H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385–393 (1984).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6 (6), 978–987 (2000).
[CrossRef]

C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869–878 (2009).
[CrossRef]

IET Optoelectron.

F. K. Khan, J. Wang, and D. T. Cassidy, “Coupled cavity InGaAsP/InP laser for synthetic optical coherence tomography and other applications,” IET Optoelectron. 4, 25–35 (2010).
[CrossRef]

J. Appl. Phys.

K. J. Ebeling and L. A. Coldren, “Analysis of multi element semiconductor laser,” J. Appl. Phys. 54, 2962–2969 (1983).
[CrossRef]

J. Lightwave Technol.

K. Hotate and O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” J. Lightwave Technol. 11, 1701–1710 (1993).
[CrossRef]

J. Mod. Opt.

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode laser,” J. Mod. Opt. 46, 1071–1078 (1999).

Phys. Lett.

H. Manger and H. Rothe, “Selection of axial modes in optical masers,” Phys. Lett. 7 (5), 330–331 (1963).
[CrossRef]

Science

D. Huang, E. Swanson, C. P. Lin, W. G. Stinson, W. Chang, M. R. Hec, T. Hotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181(1991).
[CrossRef] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc.

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 55, 2091–2096 (1999).
[CrossRef]

Other

W. T. Tsang, “The Cleaved-Coupled-Cavity (C3) lasers,” in Semiconductors and Semimetals, W.T.Tsang, ed. (Academic, 1985), Vol.  22, Ch. 5.

D. V. Griffiths and I. M. Smith, Numerical Methods for Engineers (CRC Press, 1991), Chap. 7, 1st ed..

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang, ed. (Wiley, 1995), Chap. 3.

J. W. Goodman, Statistical Optics (Wiley, 1985), Ch. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic wavelength tuning mechanism in a two-section coupled-cavity laser. The new lasing peak (dashed) is due to the change in injection current and hence refractive index of section 2.

Fig. 2
Fig. 2

below-threshold spectra with control section current switched off.

Fig. 3
Fig. 3

Spectral data showing the mode spacing of the combined cavity (Both control and lasing sections are switched on). Mode amplitudes have changed due to the wavelength selective reflectivity.

Fig. 4
Fig. 4

Schematic of the gap scattering matrix and boundary condition employed in the traveling wave method. The S-parameters represent the gap between the two cavities.

Fig. 5
Fig. 5

Simulation of wavelength tuning by a coupled-cavity laser (a) by varying I C only with fixed I L Not all the modes can be selected with fixed lasing current. (b) varying both I C and I L .

Fig. 6
Fig. 6

Shift of gain peak with varying control section current.

Fig. 7
Fig. 7

Experimental wavelength tuning by a coupled-cavity laser by varying I C with fixed I L . Modes are not necessarily selected in an orderly fashion and their selection depends on gain peak and wavelength dependant reflectance.

Fig. 8
Fig. 8

Suggested modulation waveform for increased gain to the middle wavelengths of the tuning range.

Fig. 9
Fig. 9

Total single mode spectrum of a AMQW laser tuned with a DOE. The DOE forms an external cavity with the laser.

Fig. 10
Fig. 10

Schematic of the C 3 laser with a SXC formed by a glass slide.

Fig. 11
Fig. 11

Time averaged spectrum for a C 3 laser (a) without SXC (b) with SXC.

Fig. 12
Fig. 12

Interferogram with C 3 laser as light source (a) without SXC (b) with SXC.

Fig. 13
Fig. 13

Simulated lasing peak position and effective reflectivity when the SXC mirror is placed (a)  320 μm and (b)  350 μm in front of the output facet of the lasing cavity.

Tables (1)

Tables Icon

Table 1 Definitions of Variables Used in Eqs. (1, 2, 3)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d n ( x ) d t = N A n ( x ) B n 2 ( x ) C n 3 ( x ) i = 1 N modes g i n ( x ) ( I i ( x ) + I i ( x ) )
d I i ( x ) d x = + g i n ( x ) I i ( x ) + β B n 2 ( x ) N modes
d I i ( x ) d x = g i n ( x ) I i ( x ) + β B n 2 ( x ) N modes
ζ 1 = h f ( x n , y n )
ζ 2 = h f ( x n + h 2 , y n + ζ 1 2 )
y n + 1 = y n + ζ 2 .
I i ( 0 + ) = I i ( 0 + ) × R ( 0 + )
I i ( L 1 + ) = | S 12 | 2 × I i ( L 1 ) + I i ( L 1 + ) × | S 22 | 2 + 2 I i ( L 1 ) | S 12 | × I i ( L 1 + ) | S 22 | cos ( Δ ϕ i ( L 1 ) )
I i ( L 1 ) = I i ( L 1 + ) × | S 21 | 2 + I i ( L 1 ) × | S 11 | 2 + 2 I i ( L 1 + ) | S 21 | × I i ( L 1 ) | S 11 | cos ( Δ ϕ i ( L 1 ) )
I i ( L ) = I i ( L ) × R ( L )

Metrics