Abstract

We experimentally demonstrate that, under the same laser fluence, there exists an optimal proportional relation between the laser power and pulse number for the fabrication of surface-microstructured silicon. During this fabrication process, the pulse number represents the interaction time between the laser and the silicon, which determines the depth of energy transferred into the inner part of the material, while the laser power determines the ablation and volatilization rate of the silicon. The proper combination of laser power and pulse number can ablate the material on the silicon surface effectively and have enough time to transfer the energy into the deep layer, which can produce microstructured silicon with a high spike. In addition, we compare the absorptance of samples etched by different combinations of laser power and pulse number; the corresponding results further prove the existence of an optimal proportional relation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
    [CrossRef]
  2. M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
    [CrossRef]
  3. A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
    [CrossRef]
  4. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
    [CrossRef]
  5. H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
    [CrossRef]
  6. P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008).
    [CrossRef]
  7. Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
    [CrossRef]
  8. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
    [CrossRef]
  9. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
    [CrossRef]
  10. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
    [CrossRef]
  11. J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
    [CrossRef]
  12. J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
    [CrossRef]
  13. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
    [CrossRef]
  14. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
    [CrossRef]
  15. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
    [CrossRef]

2009

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

2008

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008).
[CrossRef]

A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
[CrossRef]

2006

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
[CrossRef]

2005

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

2004

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

2003

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[CrossRef]

2001

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

2000

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

1998

T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Albrecht, A.

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

Beigang, R.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008).
[CrossRef]

Branz, H. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

Campbell, J. C.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Carey, J. E.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Cary, J. E.

A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
[CrossRef]

Chen, D.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Chen, X.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Crouch, C. H.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Deliwala, S.

T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Finlay, R. J.

T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Fischer, M.

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

Fowlkes, J. D.

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

Friend, C. M.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[CrossRef]

Genin, F. Y.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
[CrossRef]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Her, T.

T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Hoyer, P.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008).
[CrossRef]

Huang, Z.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Inanç, I.

A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
[CrossRef]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Kley, E.-B.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008).
[CrossRef]

Kremin, C.

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

Kurt, A.

A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
[CrossRef]

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Li, W.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Liu, M.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Lowndes, D. H.

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

Mazur, E.

A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

McDonald, J. P.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
[CrossRef]

Meier, D. L.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

Nagel, O.

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

Page, M. R.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

Pedraza, A. J.

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

Serpengüzel, A.

A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
[CrossRef]

Sheehy, M. A.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Shen, M.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
[CrossRef]

Shen, Y.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Stoebenau, S.

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

Stradins, P.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Stubenrauch, M.

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

Theuer, M.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008).
[CrossRef]

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Tull, B. R.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
[CrossRef]

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

Winston, L.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Yalisove, S. M.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
[CrossRef]

Yin, G.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Yost, V. E.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Yuan, H.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

Zhao, L.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Zhu, J.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Appl. Phys. A

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641(2004).
[CrossRef]

Appl. Phys. Lett.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

T. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501(2009).
[CrossRef]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106(2008).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
[CrossRef]

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Appl. Surf. Sci.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Chem. Mater.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

J. Appl. Phys.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93, 2626–2629 (2003).
[CrossRef]

J. Micromech. Microeng.

M. Stubenrauch, M. Fischer, C. Kremin, S. Stoebenau, A. Albrecht, and O. Nagel, “Black silicon—new functionalities in microsystems,” J. Micromech. Microeng. 16, S82–S87(2006).
[CrossRef]

J. Nanophoton.

A. Serpengüzel, A. Kurt, I. Inanç, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” J. Nanophoton. 2, 021770(2008).
[CrossRef]

MRS Bull.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull. 31, 626–633 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM photos of the surface-microstructured silicon produced by (a)  400 mW , 500 pulses; (b)  600 mW , 333 pulses; (c)  800 mW , 250 pulses; (d)  1000 mW , 200 pulses; (e)  1200 mW , 167 pulses; (f)  1400 mW , 143 pulses; (g)  1600 mW , 125 pulses; (h)  1800 mW , 111 pulses; (i)  2000 mW , 100 pulses. All pictures are viewed at an angle of 45 ° from the surface normal.

Fig. 2
Fig. 2

SEM photos of the surface-microstructured silicon produced by 1000 mW (a) 1000 and (b) 4000 pulses. The other parameters are the same as those in Fig. 1.

Fig. 3
Fig. 3

Absorption curves of surface-microstructured silicon etched by the femtosecond laser pulses with the pa rameters of 400 mW , 500 pulses (solid curve); 800 mW , 250 pulses (dashed curve); 1200 mW , 167 pulses (dashed–dotted curve); 1600 mW , 125 pulses (dotted curve).

Metrics