Abstract

Accurate spectral calibration of airborne and spaceborne imaging spectrometers is essential for proper preprocessing and scientific exploitation of high spectral resolution measurements of the land and atmosphere. A systematic performance assessment of onboard and scene-based methods for in-flight monitoring of instrument spectral calibration is presented for the first time in this paper. Onboard and ground imaging data were collected at several flight altitudes using the Airborne Prism Experiment (APEX) imaging spectrometer. APEX is equipped with an in-flight characterization (IFC) facility allowing the evaluation of radiometric, spectral, and geometric system properties, both in-flight and on-ground for the full field of view. Atmospheric and onboard filter spectral features present in at-sensor radiances are compared with the same features in reference transmittances convolved to varying instrument spectral configurations. A spectrum-matching algorithm, taking advantage of the high sensitivity of measurements around sharp spectral features toward spectrometer spectral performance, is used to retrieve channel center wavelength and bandwidth parameters. Results showed good agreement between spectral parameters estimated using onboard IFC and ground imaging data. The average difference between estimates obtained using the O2 and H2O features and those obtained using the corresponding filter features amounted to about 0.3nm (0.05 of a spectral pixel). A deviation from the nominal laboratory instrument spectral calibration and an altitude-dependent performance was additionally identified. The relatively good agreement between estimates obtained by the two approaches in similar spectral windows suggests they can be used in a complementary fashion: while the method relying on atmospheric features can be applied without the need for dedicated calibration acquisitions, the IFC allows assessment at user-selectable wavelength positions by custom filters as well as for the system on-ground.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Schaepman, “Imaging spectrometers,” in The SAGE Handbook of Remote Sensing, T.A.Warner, M.D.Nellis, and G.Foody (eds.) (SAGE, 2009), pp. 166–178.
  2. M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
    [CrossRef]
  3. R. Green, “Spectral calibration requirements for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998).
    [CrossRef]
  4. B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
    [CrossRef]
  5. R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, 29–42 (2008).
    [CrossRef]
  6. B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
    [CrossRef]
  7. F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast and simple model for atmospheric radiative transfer,” Atmos. Meas. Tech. 3, 1129–1141 (2010).
    [CrossRef]
  8. R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49, 1772–1780 (2011).
    [CrossRef]
  9. L. Guanter, R. Richter, and J. Moreno, “Spectral calibration of hyperspectral imagery using atmospheric absorption features,” Appl. Opt. 45, 2360–2370 (2006).
    [CrossRef] [PubMed]
  10. J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
    [CrossRef]
  11. Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41, 1223–1231(2003).
    [CrossRef]
  12. A. Rodger, “SODA: A new method of in-scene atmospheric water vapor estimation and post-flight spectral recalibration for hyperspectral sensors: Application to the HyMap sensor at two locations,” Remote Sens. Environ. 115, 536–547 (2011).
    [CrossRef]
  13. S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
    [CrossRef]
  14. H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000).
    [CrossRef]
  15. P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002).
    [CrossRef]
  16. T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.
  17. P. D’Odorico, E. Alberti, and M. Schaepman, “In-flight spectral performance monitoring of the Airborne Prism Experiment,” Appl. Opt. 49, 3082–3091 (2010).
    [CrossRef] [PubMed]
  18. B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.
  19. R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
    [CrossRef]
  20. S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.
  21. R. O. Green, “Determination of the in-flight spectral calibration of AVIRIS using atmospheric absorption features,” in Proceedings of the Fifth Annual JPL Airborne Earth Science Workshop, Vol.  1, R.O.Green, ed. (Jet Prop. Lab., 1995), pp. 71–74.
  22. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
    [CrossRef]
  23. L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
    [CrossRef]
  24. L. Guanter, R. Richter, and H. Kaufmann, “On the application of the MODTRAN 4 atmospheric radiative transfer code to optical remote sensing,” Int. J. Remote Sens. 30, 1407–1424(2009).
    [CrossRef]
  25. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998).
    [CrossRef]
  26. L. Guanter, K. Segl, B. Sang, L. Alonso, H. Kaufmann, and J. Moreno, “Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers,” Opt. Express 17, 11594–11606 (2009).
    [CrossRef] [PubMed]

2011 (2)

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49, 1772–1780 (2011).
[CrossRef]

A. Rodger, “SODA: A new method of in-scene atmospheric water vapor estimation and post-flight spectral recalibration for hyperspectral sensors: Application to the HyMap sensor at two locations,” Remote Sens. Environ. 115, 536–547 (2011).
[CrossRef]

2010 (2)

P. D’Odorico, E. Alberti, and M. Schaepman, “In-flight spectral performance monitoring of the Airborne Prism Experiment,” Appl. Opt. 49, 3082–3091 (2010).
[CrossRef] [PubMed]

F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast and simple model for atmospheric radiative transfer,” Atmos. Meas. Tech. 3, 1129–1141 (2010).
[CrossRef]

2009 (5)

B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[CrossRef]

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

L. Guanter, R. Richter, and H. Kaufmann, “On the application of the MODTRAN 4 atmospheric radiative transfer code to optical remote sensing,” Int. J. Remote Sens. 30, 1407–1424(2009).
[CrossRef]

L. Guanter, K. Segl, B. Sang, L. Alonso, H. Kaufmann, and J. Moreno, “Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers,” Opt. Express 17, 11594–11606 (2009).
[CrossRef] [PubMed]

2008 (2)

R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, 29–42 (2008).
[CrossRef]

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

2007 (1)

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

2006 (1)

2005 (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

2004 (1)

B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

2003 (1)

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41, 1223–1231(2003).
[CrossRef]

2002 (1)

P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002).
[CrossRef]

2000 (1)

H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000).
[CrossRef]

1998 (3)

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

R. Green, “Spectral calibration requirements for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998).
[CrossRef]

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998).
[CrossRef]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Adler-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Alberti, E.

Alonso, L.

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Aronsson, M.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Barbe, A.

L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Barry, P. S.

P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002).
[CrossRef]

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Borel, C. C.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Bourg, L.

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

Bowser, J.

H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000).
[CrossRef]

Brazile, J.

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

Che, N.

H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000).
[CrossRef]

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Chippendale, B.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chlebek, C.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Chovit, C.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

Chrien, T.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

D’Odorico, P.

Davis, C.

B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

Davis, C. O.

B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[CrossRef]

Delwart, S.

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

Eastwood, M.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

Eversberg, T.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Faust, J.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Fischer, J.

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

Forster, K. P.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Gao, B. C.

B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

Gao, B.-C.

B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[CrossRef]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Gege, P.

S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.

Goetz, A. F. H.

B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[CrossRef]

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41, 1223–1231(2003).
[CrossRef]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Green, R.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

R. Green, “Spectral calibration requirements for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683–690 (1998).
[CrossRef]

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

Green, R. O.

R. O. Green, “Determination of the in-flight spectral calibration of AVIRIS using atmospheric absorption features,” in Proceedings of the Fifth Annual JPL Airborne Earth Science Workshop, Vol.  1, R.O.Green, ed. (Jet Prop. Lab., 1995), pp. 71–74.

Guanter, L.

Hajek, P.

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

Hofer, S.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Itten, K.

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

Johnson, H.

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

Kaiser, S.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Kaufmann, H.

L. Guanter, K. Segl, B. Sang, L. Alonso, H. Kaufmann, and J. Moreno, “Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers,” Opt. Express 17, 11594–11606 (2009).
[CrossRef] [PubMed]

L. Guanter, R. Richter, and H. Kaufmann, “On the application of the MODTRAN 4 atmospheric radiative transfer code to optical remote sensing,” Int. J. Remote Sens. 30, 1407–1424(2009).
[CrossRef]

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Kindel, B. C.

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41, 1223–1231(2003).
[CrossRef]

Kokhanovsky, A. A.

F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast and simple model for atmospheric radiative transfer,” Atmos. Meas. Tech. 3, 1129–1141 (2010).
[CrossRef]

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998).
[CrossRef]

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Liang, S.

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Mogulsky, V.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Montes, M.

B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

Montes, M. J.

B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[CrossRef]

Montgomery, H.

H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000).
[CrossRef]

Mooshuber, W.

S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.

Moreno, J.

Muller, A.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Müller, A.

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49, 1772–1780 (2011).
[CrossRef]

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

Neumann, C.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Neville, R. A.

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, 29–42 (2008).
[CrossRef]

Olah, M.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Painter, T. H.

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

Parker, K.

H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000).
[CrossRef]

Pavri, B.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Plaza, A. J.

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

Preusker, R.

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

Qu, Z.

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41, 1223–1231(2003).
[CrossRef]

Ramon, D.

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998).
[CrossRef]

Richter, R.

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49, 1772–1780 (2011).
[CrossRef]

L. Guanter, R. Richter, and H. Kaufmann, “On the application of the MODTRAN 4 atmospheric radiative transfer code to optical remote sensing,” Int. J. Remote Sens. 30, 1407–1424(2009).
[CrossRef]

L. Guanter, R. Richter, and J. Moreno, “Spectral calibration of hyperspectral imagery using atmospheric absorption features,” Appl. Opt. 45, 2360–2370 (2006).
[CrossRef] [PubMed]

Rodger, A.

A. Rodger, “SODA: A new method of in-scene atmospheric water vapor estimation and post-flight spectral recalibration for hyperspectral sensors: Application to the HyMap sensor at two locations,” Remote Sens. Environ. 115, 536–547 (2011).
[CrossRef]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Sang, B.

L. Guanter, K. Segl, B. Sang, L. Alonso, H. Kaufmann, and J. Moreno, “Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers,” Opt. Express 17, 11594–11606 (2009).
[CrossRef] [PubMed]

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Santer, R.

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

Sarture, C.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

Schaepman, M.

Schaepman, M. E.

F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast and simple model for atmospheric radiative transfer,” Atmos. Meas. Tech. 3, 1129–1141 (2010).
[CrossRef]

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

M. E. Schaepman, “Imaging spectrometers,” in The SAGE Handbook of Remote Sensing, T.A.Warner, M.D.Nellis, and G.Foody (eds.) (SAGE, 2009), pp. 166–178.

Schläpfer, D.

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49, 1772–1780 (2011).
[CrossRef]

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

Schubert, J.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Segal, C.

P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002).
[CrossRef]

Segl, K.

Seidel, F. C.

F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast and simple model for atmospheric radiative transfer,” Atmos. Meas. Tech. 3, 1129–1141 (2010).
[CrossRef]

Shepanski, J.

P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002).
[CrossRef]

Solis, M.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Staenz, K.

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, 29–42 (2008).
[CrossRef]

Stahl, N.

S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.

Strobl, P.

S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.

Stuffler, T.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Sun, L.

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, 29–42 (2008).
[CrossRef]

Ustin, S. L.

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

van der Piepen, H.

S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.

Verrelst, J.

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

Williams, O.

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998).
[CrossRef]

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998).
[CrossRef]

Appl. Opt. (3)

Atmos. Meas. Tech. (1)

F. C. Seidel, A. A. Kokhanovsky, and M. E. Schaepman, “Fast and simple model for atmospheric radiative transfer,” Atmos. Meas. Tech. 3, 1129–1141 (2010).
[CrossRef]

Can. J. Remote Sens. (2)

R. A. Neville, L. Sun, and K. Staenz, “Spectral calibration of imaging spectrometers by atmospheric absorption feature matching,” Can. J. Remote Sens. 34, 29–42 (2008).
[CrossRef]

J. Brazile, R. A. Neville, K. Staenz, D. Schläpfer, L. Sun, and K. Itten, “Towards scene-based retrieval of spectral response functions for hyperspectral imagers using Frauenhofer features,” Can. J. Remote Sens. 34, S43–S58 (2008).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (3)

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41, 1223–1231(2003).
[CrossRef]

H. Montgomery, N. Che, K. Parker, and J. Bowser, “The algorithm for MODIS wavelength on-orbit calibration using the SRCA,” IEEE Trans. Geosci. Remote Sens. 38, 877–884(2000).
[CrossRef]

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49, 1772–1780 (2011).
[CrossRef]

Int. J. Remote Sens. (2)

S. Delwart, R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, “MERIS in-flight spectral calibration,” Int. J. Remote Sens. 28, 479–496 (2007).
[CrossRef]

L. Guanter, R. Richter, and H. Kaufmann, “On the application of the MODTRAN 4 atmospheric radiative transfer code to optical remote sensing,” Int. J. Remote Sens. 30, 1407–1424(2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, I. E. Gordon, and A. Barbe, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update,” Proc. SPIE 5806,662–667(2005).
[CrossRef]

P. S. Barry, J. Shepanski, and C. Segal, “Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system,” Proc. SPIE 4480, 231–235 (2002).
[CrossRef]

Remote Sens. Environ. (5)

A. Rodger, “SODA: A new method of in-scene atmospheric water vapor estimation and post-flight spectral recalibration for hyperspectral sensors: Application to the HyMap sensor at two locations,” Remote Sens. Environ. 115, 536–547 (2011).
[CrossRef]

B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz, “Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean,” Remote Sens. Environ. 113, S17–S24 (2009).
[CrossRef]

B. C. Gao, M. Montes, and C. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Remote Sens. Environ. 90, 424–433 (2004).
[CrossRef]

M. E. Schaepman, S. L. Ustin, A. J. Plaza, T. H. Painter, J. Verrelst, and S. Liang, “Earth system science related imaging spectroscopy—An assessment,” Remote Sens. Environ. 113, S123–S137 (2009).
[CrossRef]

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit, M. Solis, M. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

SIAM J. Optim. (1)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147(1998).
[CrossRef]

Other (5)

S. Thiemann, P. Strobl, P. Gege, N. Stahl, W. Mooshuber, and H. van der Piepen, “Das abbildende spektrometer ROSIS,” in Publikationen der Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, E.Seyfert (ed.) (DLR, 2001), pp. 147–153.

R. O. Green, “Determination of the in-flight spectral calibration of AVIRIS using atmospheric absorption features,” in Proceedings of the Fifth Annual JPL Airborne Earth Science Workshop, Vol.  1, R.O.Green, ed. (Jet Prop. Lab., 1995), pp. 71–74.

M. E. Schaepman, “Imaging spectrometers,” in The SAGE Handbook of Remote Sensing, T.A.Warner, M.D.Nellis, and G.Foody (eds.) (SAGE, 2009), pp. 166–178.

T. Chrien, M. Eastwood, R. Green, C. Sarture, H. Johnson, C. Chovit, and P. Hajek, “Airborne visible/infrared imaging spectrometer (AVIRIS) onboard calibration system,” in Proceeding of the Fifth Annual JPL Airborne Earth Science Workshop(Jet Prop. Lab., 1995), pp. 31–32.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. P. Forster, S. Hofer, T. Stuffler, H. Kaufmann, A. Muller, T. Eversberg, and C. Chlebek, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies,” in Imaging Spectrometry XIII (SPIE, 2008), 708605–708615.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

IFC facility onboard APEX: (1) QTH lamp, (2) optical fiber, (3) fiber output (4) calibration shutter, (5) fixed folding mirror, (6) diffusers, (7) feedback loop sensor, (8) sliding folding mirror, (9) filter wheel, (10) fixed folding mirror, (11) global shutter, □ temperature sensor, ∇ temperature sensor on optical base plate (averaged),⊗ differential temperature sensors.

Fig. 2
Fig. 2

Position of spectral features of the IFC filters (white) and the atmosphere (black), detectable with APEX spectral resolution. Insufficient signal-to-noise ratio might limit the detectability of some of these features.

Fig. 3
Fig. 3

Absorption features used for VNIR (top) and SWIR (middle, bottom) detectors for instrument spectral parameter estimation. Left: IFC NIST filter features, and right: atmospheric features. The continuous lines show the transmittance spectra while the discontinuous lines represent the same spectra convolved with APEX bands (offset for clarity).

Fig. 4
Fig. 4

Smile characterization at 760 nm for four flight altitudes. The continuous black line represents the nominal smile as measured in the lab, while the dotted lines represent the estimates based on the O 2 -A absorption feature (blue) and on the NIST filter absorption feature (red).

Fig. 5
Fig. 5

Estimated spectral shift in the across-track direction expressed as fraction of spectral pixel. Retrieval based on IFC data acquired on ground before (top) and after (bottom) the flight, as well as for two different flight heights. Three VNIR wavelength regions are considered: 630 658 nm (black), 726 760 nm (light gray), 788 819 nm (dark gray).

Fig. 6
Fig. 6

Smile characterization at 1175 nm for four flight altitudes. The continuous black line represents the nominal smile as measured in the lab, while the dotted lines represent the estimates based on the water vapor absorption feature centered at 1130 nm (blue) and a NIST filter absorption feature centered at 1222 nm (red).

Fig. 7
Fig. 7

Smile characterization at 1974 nm for four flight altitudes. The continuous black line represents the nominal smile as measured in the lab, while the dotted lines represent the estimates based on the CO 2 absorption feature centered at 2004 nm (blue) and a NIST filter absorption feature centered at 1934 nm (red).

Fig. 8
Fig. 8

Estimated spectral shift in the across-track direction expressed as fraction of spectral pixel. Retrieval based on IFC data acquired on ground before (top) and after (bottom) the flight, as well as for two different flight heights. Three SWIR wavelength regions are considered: 1193 1269 nm (black), 1339 1423 nm (light gray), and 1909 1974 nm (dark gray).

Fig. 9
Fig. 9

FWHM characterization at 760 nm for four flight altitudes. The continuous black line represents the nominal FWHM as measured in the lab, while the discontinuous lines represent the estimates based on the O 2 -A absorption feature (blue) and on the corresponding NIST filter absorption feature (red).

Fig. 10
Fig. 10

Surface reflectance spectra obtained based on nominal (red) and updated (black) spectral calibration param eters. For the VNIR the update is based on the IFC feature located around 743 nm . For the SWIR the update was performed for each spectral region separately based on the corresponding IFC feature.

Tables (1)

Tables Icon

Table 1 APEX Instrument Performance

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S i ( Δ λ , Δ FWHM ) = j = 1 j = N T ( λ j ) * SRF i ( Δ λ , Δ FWHM ) ,

Metrics