Abstract

In this report, we use carbon tetrachloride as an example to demonstrate that substance can be quickly identified through the measurement of the two Raman peaks simply by an integrated module of dual strip silicon photomultipliers operating at room temperature in conjunction with a gated photon counting technique. Both the peak positions and the relative intensity ratio of the two Raman peaks are used to identify the substance with a reduced false acceptance rate. A complete Raman spectrum of the substance can also be measured by using this method combined with a scanning monochromator.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
    [CrossRef]
  2. G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
    [CrossRef]
  3. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000).
  4. D. Renker and E. Lorenz, “Advances in solid state photon detectors,” J. Instrum. 4, P04004 (2009).
    [CrossRef]
  5. N. Otte, “The silicon photomultiplier—a new device for high energy physics, astroparticle physics, industrial and medical applications,” in Proceedings of the International Symposium on Detector Development for Particle, Astroparticle and Synchotron Radiation Experiments (SNIC, 2006), pp. 1–9.
  6. G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multi-pixel photon counters,” Appl. Opt. 49, 2601–2605 (2010).
    [CrossRef]
  7. G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
    [CrossRef]
  8. R. J. Meier and A. van der Pol, “A versatile aid in spectrum assignment: discriminating between fundamental and non-fundamental vibrational bands in Raman spectra,” Vib. Spectrosc. 23, 95–101 (2000).
    [CrossRef]

2010

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multi-pixel photon counters,” Appl. Opt. 49, 2601–2605 (2010).
[CrossRef]

2009

D. Renker and E. Lorenz, “Advances in solid state photon detectors,” J. Instrum. 4, P04004 (2009).
[CrossRef]

2004

G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
[CrossRef]

2003

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef]

2000

R. J. Meier and A. van der Pol, “A versatile aid in spectrum assignment: discriminating between fundamental and non-fundamental vibrational bands in Raman spectra,” Vib. Spectrosc. 23, 95–101 (2000).
[CrossRef]

Fini, G.

G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
[CrossRef]

Han, D.

Han, D. J.

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

Haque, S.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef]

Hench, L. L.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef]

Hu, C. Z.

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

Hu, X.

Hu, X. B.

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

Liang, K.

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multi-pixel photon counters,” Appl. Opt. 49, 2601–2605 (2010).
[CrossRef]

Lorenz, E.

D. Renker and E. Lorenz, “Advances in solid state photon detectors,” J. Instrum. 4, P04004 (2009).
[CrossRef]

McCreery, R. L.

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000).

Meier, R. J.

R. J. Meier and A. van der Pol, “A versatile aid in spectrum assignment: discriminating between fundamental and non-fundamental vibrational bands in Raman spectra,” Vib. Spectrosc. 23, 95–101 (2000).
[CrossRef]

Notingher, I.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef]

Otte, N.

N. Otte, “The silicon photomultiplier—a new device for high energy physics, astroparticle physics, industrial and medical applications,” in Proceedings of the International Symposium on Detector Development for Particle, Astroparticle and Synchotron Radiation Experiments (SNIC, 2006), pp. 1–9.

Polak, J. M.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef]

Renker, D.

D. Renker and E. Lorenz, “Advances in solid state photon detectors,” J. Instrum. 4, P04004 (2009).
[CrossRef]

van der Pol, A.

R. J. Meier and A. van der Pol, “A versatile aid in spectrum assignment: discriminating between fundamental and non-fundamental vibrational bands in Raman spectra,” Vib. Spectrosc. 23, 95–101 (2000).
[CrossRef]

Verrier, S.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef]

Yang, R.

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multi-pixel photon counters,” Appl. Opt. 49, 2601–2605 (2010).
[CrossRef]

Yin, D. P.

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

Zhang, C.

Zhang, G.

Zhang, G. Q.

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

Appl. Opt.

Biopolymers

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef]

J. Instrum.

D. Renker and E. Lorenz, “Advances in solid state photon detectors,” J. Instrum. 4, P04004 (2009).
[CrossRef]

J. Raman Spectrosc.

G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

G. Q. Zhang, X. B. Hu, C. Z. Hu, D. P. Yin, K. Liang, R. Yang, and D. J. Han, “Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon,” Nucl. Instrum. Methods Phys. Res. A 621, 116–120 (2010).
[CrossRef]

Vib. Spectrosc.

R. J. Meier and A. van der Pol, “A versatile aid in spectrum assignment: discriminating between fundamental and non-fundamental vibrational bands in Raman spectra,” Vib. Spectrosc. 23, 95–101 (2000).
[CrossRef]

Other

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000).

N. Otte, “The silicon photomultiplier—a new device for high energy physics, astroparticle physics, industrial and medical applications,” in Proceedings of the International Symposium on Detector Development for Particle, Astroparticle and Synchotron Radiation Experiments (SNIC, 2006), pp. 1–9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics