Abstract

The evolution of polarization and spin angular momentum (SAM) in periodically rocking superlattices (PRS) is investigated. Unlike in the birefringent crystal, they exhibit unusual properties. The evolution of polarization shows many remarkable trajectories and the SAM oscillates inside the PRS. The results may find applications in polarization-state or optical SAM control.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Jonsson and C. Flytzanis, “Polarization state controlled multistability of a nonlinear magneto-optic cavity,” Phys. Rev. Lett. 82, 1426–1429 (1999).
    [CrossRef]
  2. A. Kavokin, G. Malpuech, and M. Glazov, “Optical spin Hall effect,” Phys. Rev. Lett. 95, 136601 (2005).
    [CrossRef] [PubMed]
  3. C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
    [CrossRef]
  4. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [CrossRef]
  5. L. X. ChenG. L. Zheng, J. Xu, B. Z. Zhang, and W. L. She, “Electrically controlled transfer of spin angular momentum of light in an optically active medium,” Opt. Lett. 31, 3474–3476 (2006).
    [CrossRef] [PubMed]
  6. L. X. Chen, G. L. Zheng, and W. L. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A 75, 061403 (2007).
    [CrossRef]
  7. L. X. Chen and W. L. She, “Electro-optically forbidden or enhanced spin-to-orbital angular momentum conversion in a focused light beam,” Opt. Lett. 33, 696–698 (2008).
    [CrossRef] [PubMed]
  8. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998).
    [CrossRef]
  9. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [CrossRef] [PubMed]
  10. B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001).
    [CrossRef] [PubMed]
  11. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
    [CrossRef]
  12. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
    [CrossRef]
  13. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
    [CrossRef]
  14. Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
    [CrossRef] [PubMed]
  15. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117(2003).
    [CrossRef] [PubMed]
  16. K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009).
    [CrossRef]
  17. K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34, 1051–1053 (2009).
    [CrossRef] [PubMed]
  18. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
    [CrossRef]
  19. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979).
    [CrossRef]
  20. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
    [CrossRef]
  21. R. Ulrich, “Representation of codirectional coupled waves,” Opt. Lett. 1, 109–111 (1977).
    [CrossRef] [PubMed]
  22. H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986).
    [CrossRef] [PubMed]
  23. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  24. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, no, in congruente lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]

2009 (3)

K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34, 1051–1053 (2009).
[CrossRef] [PubMed]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[CrossRef]

2008 (1)

2007 (2)

L. X. Chen, G. L. Zheng, and W. L. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A 75, 061403 (2007).
[CrossRef]

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

2006 (1)

2005 (1)

A. Kavokin, G. Malpuech, and M. Glazov, “Optical spin Hall effect,” Phys. Rev. Lett. 95, 136601 (2005).
[CrossRef] [PubMed]

2003 (2)

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117(2003).
[CrossRef] [PubMed]

2001 (1)

B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001).
[CrossRef] [PubMed]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
[CrossRef]

1999 (1)

F. Jonsson and C. Flytzanis, “Polarization state controlled multistability of a nonlinear magneto-optic cavity,” Phys. Rev. Lett. 82, 1426–1429 (1999).
[CrossRef]

1998 (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998).
[CrossRef]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

1997 (3)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, no, in congruente lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

1986 (1)

1979 (1)

1977 (1)

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Bramati, A.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Chen, L. X.

Chen, X. F.

K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34, 1051–1053 (2009).
[CrossRef] [PubMed]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117(2003).
[CrossRef] [PubMed]

Chen, Y. F.

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

Chen, Y. L.

Chen, Y. P.

Flytzanis, C.

F. Jonsson and C. Flytzanis, “Polarization state controlled multistability of a nonlinear magneto-optic cavity,” Phys. Rev. Lett. 82, 1426–1429 (1999).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Giacobino, E.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Glazov, M.

A. Kavokin, G. Malpuech, and M. Glazov, “Optical spin Hall effect,” Phys. Rev. Lett. 95, 136601 (2005).
[CrossRef] [PubMed]

Glazov, M. M.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Jonsson, F.

F. Jonsson and C. Flytzanis, “Polarization state controlled multistability of a nonlinear magneto-optic cavity,” Phys. Rev. Lett. 82, 1426–1429 (1999).
[CrossRef]

Jundt, D. H.

Karr, J. P.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Kavokin, A.

A. Kavokin, G. Malpuech, and M. Glazov, “Optical spin Hall effect,” Phys. Rev. Lett. 95, 136601 (2005).
[CrossRef] [PubMed]

Kavokin, A. V.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Leyder, C.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Liew, T. C. H.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Liu, K.

K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34, 1051–1053 (2009).
[CrossRef] [PubMed]

Lu, Y. Q.

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
[CrossRef]

Malpuech, G.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

A. Kavokin, G. Malpuech, and M. Glazov, “Optical spin Hall effect,” Phys. Rev. Lett. 95, 136601 (2005).
[CrossRef] [PubMed]

Ming, N. B.

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998).
[CrossRef]

Piccirillo, B.

B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001).
[CrossRef] [PubMed]

Qin, Y. Q.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Romanelli, M.

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Santamato, E.

B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001).
[CrossRef] [PubMed]

She, W. L.

Shi, J. H.

K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34, 1051–1053 (2009).
[CrossRef] [PubMed]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[CrossRef]

K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117(2003).
[CrossRef] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Toscano, C.

B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001).
[CrossRef] [PubMed]

Ulrich, R.

Vetrano, F.

B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001).
[CrossRef] [PubMed]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
[CrossRef]

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
[CrossRef]

Winful, H. G.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
[CrossRef]

Xia, Y. X.

Xu, J.

Yeh, P.

Zhang, B. Z.

Zhang, X. J.

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

Zheng, G. L.

L. X. Chen, G. L. Zheng, and W. L. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A 75, 061403 (2007).
[CrossRef]

L. X. ChenG. L. Zheng, J. Xu, B. Z. Zhang, and W. L. She, “Electrically controlled transfer of spin angular momentum of light in an optically active medium,” Opt. Lett. 31, 3474–3476 (2006).
[CrossRef] [PubMed]

Zhou, Z. E.

K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009).
[CrossRef]

Zhu, S. N.

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Zhu, Y. M.

Zhu, Y. Y.

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721(2000).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Phys. (1)

C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the optical spin Hall effect,” Nat. Phys. 3, 628–631 (2007).
[CrossRef]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Erratum: optical alignment and spinning of laser-trapped microscopic particles,” Nature 395, 621 (1998).
[CrossRef]

Opt. Commun. (1)

K. Liu, J. H. Shi, Z. E. Zhou, and X. F. Chen, “Electro-optic Solc-type flat-top bandpass filter based on periodically poled lithium niobate,” Opt. Commun. 282, 1207–1211(2009).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Phys. Rev. A (2)

L. X. Chen, G. L. Zheng, and W. L. She, “Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium,” Phys. Rev. A 75, 061403 (2007).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Y. Y. Zhu, X. J. Zhang, Y. Q. Lu, Y. F. Chen, S. N. Zhu, and N. B. Ming, “New type of polariton in a piezoelectric superlattice,” Phys. Rev. Lett. 90, 053903 (2003).
[CrossRef] [PubMed]

F. Jonsson and C. Flytzanis, “Polarization state controlled multistability of a nonlinear magneto-optic cavity,” Phys. Rev. Lett. 82, 1426–1429 (1999).
[CrossRef]

A. Kavokin, G. Malpuech, and M. Glazov, “Optical spin Hall effect,” Phys. Rev. Lett. 95, 136601 (2005).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

B. Piccirillo, C. Toscano, F. Vetrano, and E. Santamato, “Orbital and spin photon angular momentum transfer in liquid crystals,” Phys. Rev. Lett. 86, 2285–2288 (2001).
[CrossRef] [PubMed]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Phase-plane trajectories of the polarization state. (a),  κ = 0 and the input state of polarization is θ = 30 ° and e = 0 . (b)–(d),  κ 0 , Δ β = 0 , and L 2 equals L 1 , 2 L 1 and 3 L 1 for (b), (d) and (e), respectively, with the input state of polarization satisfying θ = 0 and e = 0 . (e), (f),  κ 0 , Δ β 0 . The initial state of polarization is θ = 0 , e = 0 for (e) and θ = 45 ° , e = 1 for (f).

Fig. 2
Fig. 2

(a) shows the evolution of SAM inside the PRS for different phase mismatching conditions. The applied electric field is E = 4 kV / cm ; the wavelength ranges from 1520 nm to 1560 nm , and the wavelength that fulfills Δ β = 0 is 1540 nm . Likewise, the temperature is 20 ° C ; (b) details the evolution of SAM with distance for wavelength at 1544 nm ( Δ β > 0 ) and 1536 nm ( Δ β < 0 ), respectively. It should be noted that the period of the PPLN is 21 μm , and the SAM inside the PRS is calculated every 21 μm started from the input port.

Fig. 3
Fig. 3

(a) shows the SAM of lights as a function of wavelengths at a given distance of 2.1 cm . Different temperatures of 10, 20 and 30 ° C are considered. The applied electric field is E = 1.2 kV / cm . (b) shows the SAM of light as a function of the applied electric field. The distance is same 2.1 cm and the temperature is 20 ° C . Different wavelengths of 1539.5 nm , 1540 nm and 1540.5 nm are studied.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( z ) = [ { [ cos ( s z ) i Δ β / ( 2 s ) sin ( s z ) ] A 1 ( 0 ) i ( κ / s ) sin ( s z ) A 2 ( 0 ) } e i Δ β z / 2 { ( i κ * / s ) sin ( s z ) A 1 ( 0 ) + [ cos ( s z ) + i Δ β ( / 2 s ) sin ( s z ) ] A 2 ( 0 ) } e i Δ β z / 2 e i ( k 1 k 2 ) z ] ,
E ( z ) = [ A 1 ( 0 ) A 2 ( 0 ) e i ( k 1 k 2 ) z ] ,
{ A + = ( A 1 + i A 2 ) / 2 A = ( A 1 i A 2 ) / 2 .
E ( z ) = [ A 1 ( 0 ) cos ( | κ | z ) A 2 ( 0 ) sin ( | κ | z ) { A 2 ( 0 ) cos ( | κ | z ) + A 1 ( 0 ) sin ( | κ | z ) } e i ( k 1 k 2 ) z ] .
E ( z ) = [ E 1 ( z ) E 2 ( z ) ] = { E lef ( z ) [ 1 / 2 i / 2 ] + E rig ( z ) [ 1 / 2 i / 2 ] } .
M ( z ) = c ε 0 ( | E lef ( z ) | 2 | E rig ( z ) | 2 ) 2 w .

Metrics