Abstract

Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO2/Al2O3 films at 110°C and 280°C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100mmΦ samples, and the transmission is more than 99.8% at 1064nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO2/Al2O3 films, the LIDTs were 6.73±0.47J/cm2 and 6.5±0.46J/cm2 at 110°C on fused silica and BK7 substrates, respectively. The LIDTs at 110°C are notably better than 280°C.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
    [CrossRef]
  2. J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997).
    [CrossRef]
  3. P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000).
    [CrossRef]
  4. S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999).
    [CrossRef]
  5. M. Runkel, W. Williams, and J. DeYoreo, “Predicting bulk damage in NIF triple harmonic generators,” Proc. SPIE 3578, 322–335(1998).
  6. M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
    [CrossRef]
  7. L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).
  8. O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
    [CrossRef]
  9. P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
    [CrossRef]
  10. M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10, 19–24 (1999).
    [CrossRef]
  11. G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
    [CrossRef]
  12. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48, 1727–1732 (2009).
    [CrossRef]
  13. M. Ritala and M. Leskela, Handbook of Thin Film Materials, H.S.Nalwa, ed. (Academic, 2001), Vol.  1, pp. 103.
  14. R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
    [CrossRef]
  15. J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001).
    [CrossRef]
  16. S.-I. Zaitsu, M. Shinji, and J. Takahisa, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43, 1034–1035 (2004).
    [CrossRef]
  17. J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).
  18. S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
    [CrossRef]
  19. S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
    [CrossRef]

2009

2006

L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).

P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
[CrossRef]

2005

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

2004

S.-I. Zaitsu, M. Shinji, and J. Takahisa, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43, 1034–1035 (2004).
[CrossRef]

2002

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
[CrossRef]

S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
[CrossRef]

2001

J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001).
[CrossRef]

2000

R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
[CrossRef]

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000).
[CrossRef]

1999

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999).
[CrossRef]

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10, 19–24 (1999).
[CrossRef]

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

1998

M. Runkel, W. Williams, and J. DeYoreo, “Predicting bulk damage in NIF triple harmonic generators,” Proc. SPIE 3578, 322–335(1998).

1997

J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997).
[CrossRef]

Aarik, J.

J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001).
[CrossRef]

Aidla, A.

J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001).
[CrossRef]

Attard, D. J.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Bartlett, J.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Bonneau, F.

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000).
[CrossRef]

Brunner, R.

Carcia, P. F.

P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
[CrossRef]

Clark-Phelps, R.

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
[CrossRef]

Combis, P.

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000).
[CrossRef]

Daval, G.

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000).
[CrossRef]

Dekker, J. P.

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

DeYoreo, J.

M. Runkel, W. Williams, and J. DeYoreo, “Predicting bulk damage in NIF triple harmonic generators,” Proc. SPIE 3578, 322–335(1998).

Duan, L.

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

Evans, P. J.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Feit, M. D.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

Finnie, K. S.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Génin, F. Y.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997).
[CrossRef]

George, S. M.

P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
[CrossRef]

Gösele, U.

Groner, M. D.

P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
[CrossRef]

Guangzhou, H.

L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).

Hanley, T.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Helgert, M.

Heyroth, F.

Hu, J.

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

Hue, J.

J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997).
[CrossRef]

James, M.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Jirong, Y.

L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).

Jitsuno, T.

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
[CrossRef]

S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999).
[CrossRef]

Knez, M.

Kozlowski, M. R.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997).
[CrossRef]

Lamaignère, L.

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000).
[CrossRef]

Latella, B.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Leskela, M.

M. Ritala and M. Leskela, Handbook of Thin Film Materials, H.S.Nalwa, ed. (Academic, 2001), Vol.  1, pp. 103.

Leskelä, M.

R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
[CrossRef]

M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10, 19–24 (1999).
[CrossRef]

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

Londergan, A.

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
[CrossRef]

Ma, P.

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

Mämdar, H.

J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001).
[CrossRef]

Maricle, S. M.

J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997).
[CrossRef]

Matero, R.

R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
[CrossRef]

McLean, R. S.

P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
[CrossRef]

Mitchell, D. R. G.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Motokoshi, S.

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
[CrossRef]

S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999).
[CrossRef]

Mutsaers, C.

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

Nakatsuka, M.

S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
[CrossRef]

Prince, K. E.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Rahtu, A.

R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
[CrossRef]

Reilly, M. H.

P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
[CrossRef]

Ritala, M.

R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
[CrossRef]

M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10, 19–24 (1999).
[CrossRef]

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

M. Ritala and M. Leskela, Handbook of Thin Film Materials, H.S.Nalwa, ed. (Academic, 2001), Vol.  1, pp. 103.

Rubenchik, A. M.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

Runkel, M.

M. Runkel, W. Williams, and J. DeYoreo, “Predicting bulk damage in NIF triple harmonic generators,” Proc. SPIE 3578, 322–335(1998).

Sajavaara, T.

R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
[CrossRef]

Schwartz, S.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

Seidel, T.

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
[CrossRef]

Sheeham, L. M.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

Shinji, M.

S.-I. Zaitsu, M. Shinji, and J. Takahisa, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43, 1034–1035 (2004).
[CrossRef]

Skarp, J.

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

Sneh, O.

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
[CrossRef]

Soininen, P. J.

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

Szeghalmi, A.

Takahisa, J.

S.-I. Zaitsu, M. Shinji, and J. Takahisa, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43, 1034–1035 (2004).
[CrossRef]

Tang, M.

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

Triani, G.

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

Unstare, T.

J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001).
[CrossRef]

Williams, W.

M. Runkel, W. Williams, and J. DeYoreo, “Predicting bulk damage in NIF triple harmonic generators,” Proc. SPIE 3578, 322–335(1998).

Winkler, J.

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
[CrossRef]

Xiongying, L.

L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).

Xu, Q.

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

Yamanaka, T.

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999).
[CrossRef]

Yamanka, T.

S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

Yi, F.

L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).

Zaitsu, S.-I.

S.-I. Zaitsu, M. Shinji, and J. Takahisa, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43, 1034–1035 (2004).
[CrossRef]

S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999).
[CrossRef]

Zhang, W.

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

Appl. Opt.

Appl. Phys. Lett.

S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002).
[CrossRef]

P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006).
[CrossRef]

Appl. Surf. Sci.

J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001).
[CrossRef]

Chem. Vapor Depos.

M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999).
[CrossRef]

Chin. J. Vac. Sci. Technol.

L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).

Jpn. J. Appl. Phys.

S.-I. Zaitsu, M. Shinji, and J. Takahisa, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43, 1034–1035 (2004).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002).
[CrossRef]

Nanotechnology

M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10, 19–24 (1999).
[CrossRef]

Opt. Optoelectron. Technol.

J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).

Proc. SPIE

G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005).
[CrossRef]

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999).
[CrossRef]

J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997).
[CrossRef]

P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000).
[CrossRef]

S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999).
[CrossRef]

M. Runkel, W. Williams, and J. DeYoreo, “Predicting bulk damage in NIF triple harmonic generators,” Proc. SPIE 3578, 322–335(1998).

Thin Solid Films

O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002).
[CrossRef]

R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000).
[CrossRef]

Other

M. Ritala and M. Leskela, Handbook of Thin Film Materials, H.S.Nalwa, ed. (Academic, 2001), Vol.  1, pp. 103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic layout of small-caliber laser damaging setup.

Fig. 2
Fig. 2

Photograph of (left) laser pulse time and (right) spatial distribution.

Fig. 3
Fig. 3

Relationship between the number of precursor cycles and film thickness.

Fig. 4
Fig. 4

(left) Refractive index curves and (right) transmissions curves for fused silica and BK7.

Fig. 5
Fig. 5

Refractive index curves for (left) TiO 2 and (right) Al 2 O 3 thin films deposited on BK7 substrates by ALD.

Fig. 6
Fig. 6

Results of XRD for single-layer thin film deposited by ALD.

Fig. 7
Fig. 7

Surface morphology of the antireflective film on BK7 substrate; deposition temperature was (left) 110 ° C and (right) 280 ° C .

Fig. 8
Fig. 8

Surface morphology of the antireflective film on fused silica substrate; deposition temperature was (left) 110 ° C and (right) 280 ° C .

Fig. 9
Fig. 9

Transmission curves for the antireflector thin film deposited by ALD at different temperatures.

Fig. 10
Fig. 10

Results of the laser damage threshold.

Fig. 11
Fig. 11

Peeling off of films under an AFM and Nomarski microscope.

Fig. 12
Fig. 12

Damage of ALD films on fused silica under Nomarski microscope.

Fig. 13
Fig. 13

Damage of ALD films on BK7 under Nomarski microscope.

Fig. 14
Fig. 14

Micropits damaged under Nomarski microscope.

Tables (2)

Tables Icon

Table 1 Basic Parameters of the Nd:YAG Laser

Tables Icon

Table 2 Thickness Results of the Films Deposited by ALD

Metrics