Abstract

We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest–host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer- by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).
  2. P. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).
  3. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).
  4. J. Zyss, Molecular Nonlinear Optics Materials, Physics, and Devices (Academic, 1994).
  5. M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
    [CrossRef]
  6. G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
    [CrossRef]
  7. G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991).
    [CrossRef]
  8. O. Sugihara, M. Nakanishi, Y. Che, C. Egami, Y. Kawata, and N. Okamoto, “Single-pulse ultraviolet laser recording of periodically poled structures in polymer thin films,” Appl. Opt. 39, 5632–5637 (2000).
    [CrossRef]
  9. X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998).
    [CrossRef]
  10. J. H. Lin, N. D. Lai, C. H. Chiu, C. Y. Lin, G. W. Rieger, J. F. Young, F. S. S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16, 7832–7841 (2008).
    [CrossRef] [PubMed]
  11. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
    [CrossRef]
  12. L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
    [CrossRef]
  13. C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
    [CrossRef]
  14. R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett. 30, 424–426(2005).
    [CrossRef] [PubMed]
  15. J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
    [CrossRef]
  16. C. J. Lai, L. H. Peng, and A. H. Kung, “Optical interference in nonlinear photonic crystal,” Opt. Lett. 32, 3200–3202 (2007).
    [CrossRef] [PubMed]
  17. M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
    [CrossRef]
  18. D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14, 9896–9901 (2006).
    [CrossRef] [PubMed]
  19. K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
    [CrossRef]
  20. T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
    [CrossRef]
  21. J. S. Saltiel and Y. Kivshar, “Phase matching in nonlinear χ(2) photonic crystals,” Opt. Lett. 25, 1204–1206 (2000).
    [CrossRef]
  22. Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
    [CrossRef]
  23. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef] [PubMed]

2009 (1)

C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
[CrossRef]

2008 (2)

J. H. Lin, N. D. Lai, C. H. Chiu, C. Y. Lin, G. W. Rieger, J. F. Young, F. S. S. Chien, and C. C. Hsu, “Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide,” Opt. Express 16, 7832–7841 (2008).
[CrossRef] [PubMed]

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (2)

R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett. 30, 424–426(2005).
[CrossRef] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

2003 (2)

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
[CrossRef]

2002 (2)

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
[CrossRef]

2000 (3)

1999 (1)

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

1998 (2)

X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998).
[CrossRef]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

1996 (1)

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

1994 (1)

J. Zyss, Molecular Nonlinear Optics Materials, Physics, and Devices (Academic, 1994).

1991 (2)

P. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991).
[CrossRef]

1989 (1)

K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

1987 (1)

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).

Arie, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Bahabad, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Bauer, S.

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Boeglin, A.

Bratfalean, R. T.

Brinker, W.

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Broderick, N. G. R.

Canalias, C.

C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
[CrossRef]

Che, Y.

Chemla, D. S.

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).

Chichkov, B. N.

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Chien, F. S. S.

Chiu, C. H.

Dorkenoo, K. D.

Ducci, S.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
[CrossRef]

Egami, C.

Farsari, M.

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Fejer, M. M.

J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
[CrossRef]

Fort, A.

Fotakis, C.

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Gallo, K.

Gindre, D.

Gong, Q.

K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Gray, D.

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Hattori, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Hierle, R.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
[CrossRef]

Horsthuis, W. H. G.

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Hsu, C. C.

Hum, D. S.

J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
[CrossRef]

Jager, M.

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Josse, D.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
[CrossRef]

Kaino, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Kawata, Y.

Kivshar, Y.

Kivshar, Y. S.

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Knoll, W.

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

Kung, A. H.

Kurtz, J. R.

J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
[CrossRef]

Lai, C. J.

Lai, N. D.

Laurell, F.

C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
[CrossRef]

Lewen, R.

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Lin, C. Y.

Lin, J. H.

Mager, L.

Martin, G.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
[CrossRef]

Meijer, E. W.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991).
[CrossRef]

Mohlmann, G. R.

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Nakanishi, M.

O. Sugihara, M. Nakanishi, Y. Che, C. Egami, Y. Kawata, and N. Okamoto, “Single-pulse ultraviolet laser recording of periodically poled structures in polymer thin films,” Appl. Opt. 39, 5632–5637 (2000).
[CrossRef]

X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998).
[CrossRef]

Ni, X.

X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998).
[CrossRef]

Nijhuis, S.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991).
[CrossRef]

Nordlöf, M.

C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
[CrossRef]

Okamato, N.

X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998).
[CrossRef]

Okamoto, N.

Onodera, S.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Ovsianikov, A.

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Pasiskevicius, V.

C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
[CrossRef]

Peacock, A. C.

Peng, L. H.

C. J. Lai, L. H. Peng, and A. H. Kung, “Optical interference in nonlinear photonic crystal,” Opt. Lett. 32, 3200–3202 (2007).
[CrossRef] [PubMed]

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Prasad, P.

P. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

Rieger, G. W.

Rikken, G. L. J. A.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991).
[CrossRef]

Rochford, K. B.

K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Sakellari, I.

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Saltiel, J. S.

Saltiel, S. M.

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Saltzman, A. J.

J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
[CrossRef]

Schober, A. M.

J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
[CrossRef]

Sekkat, Z.

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

Seppen, C. J. E.

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991).
[CrossRef]

Shibata, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Shih, Y. C.

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Stegeman, G. I.

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Stegeman, G. L.

K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Sugihara, O.

O. Sugihara, M. Nakanishi, Y. Che, C. Egami, Y. Kawata, and N. Okamoto, “Single-pulse ultraviolet laser recording of periodically poled structures in polymer thin films,” Appl. Opt. 39, 5632–5637 (2000).
[CrossRef]

X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998).
[CrossRef]

Sukhorukov, A. A.

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Vamvakaki, M.

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Williams, D. J.

P. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

Yilmaz, S.

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

Young, J. F.

Zanoni, R.

K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Zyss, J.

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
[CrossRef]

J. Zyss, Molecular Nonlinear Optics Materials, Physics, and Devices (Academic, 1994).

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).

Appl. Opt. (1)

Appl. Phys. A (1)

M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis, “Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,” Appl. Phys. A 93, 11–15 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
[CrossRef]

M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
[CrossRef]

G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss, “Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides,” Appl. Phys. Lett. 83, 1086–1088 (2003).
[CrossRef]

G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991).
[CrossRef]

K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, “Nonlinear physical optics with transversely patterned quasi-phase-matching gratings,” IEEE J. Sel. Top. Quantum Electron. 8, 660–664 (2002).
[CrossRef]

J. Appl. Phys. (1)

T. Hattori, T. Shibata, S. Onodera, and T. Kaino, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Rev. (1)

X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998).
[CrossRef]

Phys. Rev. E (1)

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Other (4)

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

P. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, 1987).

J. Zyss, Molecular Nonlinear Optics Materials, Physics, and Devices (Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Fabrication process of 3D polymer quadratic nonlinear grating, (b) absorption spectrum of the DR1/PMMA thin film (c) one-photon direct laser writing system.

Fig. 2
Fig. 2

(a) Microscopy image of a photo-bleached 1D grating structure, (b) SH mapping setup, ( 40 μm × 40 μm ), SH mapping images of (c) 1D and (d) 2D χ ( 2 ) grating structures on a single active layer. Laser power and the scanning speed of the sample are 10 mW and 0.6 mm / s , respectively (corresponding to dosage of 2.4 μJ / μm 2 ). The period of both the 1D and 2D structures is 15 μm .

Fig. 3
Fig. 3

Schematic diagram, (a)–(c) microscopy images and (d)–(f) ( 45 μm × 45 μm ) SH mapping images (with lines profile at each top) of three active layers of a 3D QNG structure. Laser power and the scanning speed of the sample are 5 mW and 0.6 mm / s , respectively (corresponding to dosage of 1.4 μJ / μm 2 ).

Metrics