Abstract

Multiple-exposure phase calculation procedures are widely used in electronic speckle pattern inter ferometry to calculate phase maps of displacements. We developed a double-exposure process based on holographic illumination of the object and the idea of the spatial carrier phase-shifting method to examine transient displacements. In our work, computer-generated holograms and a spatial light modulator were used to generate proper coherent illuminating masks. In this adjustment all phase-shifted states were at our disposal from one recorded speckle image for phase calculation. This technique can be used in the large scale of transient measurements. In this paper we illustrate the principle through several examples.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Gåsvik, Optical Metrology (Wiley, 1995).
  2. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1983).
  3. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053-3058 (1985).
    [CrossRef] [PubMed]
  4. G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96(1993).
    [CrossRef]
  5. G. Pedrini and H. J. Tiziani, “Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Opt. 33, 7857-7863 (1994).
    [CrossRef] [PubMed]
  6. S. Pasko, M. Sutkowski, and M. Kujawinska, “The concept of optical reconstruction of digitally stored holograms,” Proc. SPIE 3744, 154-159 (1999).
    [CrossRef]
  7. Y. Bitou, “Digital phase-shifting interferometer with an electrically addressed liquid-crystal spatial light modulator,” Opt. Lett. 28, 1576-1578 (2003).
    [CrossRef] [PubMed]
  8. C.-C. Kao, G.-B. Yeh, S.-S. Lee, C.-K. Lee, C.-S. Yang, and K.-C. Wu, “Phase-shifting algorithms for electronic speckle pattern interferometry,” Appl. Opt. 41, 46-54 (2002).
    [CrossRef] [PubMed]
  9. M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553-561 (1992).
    [CrossRef]
  10. G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367-374 (1995).
    [CrossRef]
  11. G. Pedrini and H. J. Tiziani, “Digital double-pulse holographic interferometry using Fresnel and image plane holograms,” Measurement 15, 251-261 (1995).
    [CrossRef]
  12. J. Leval, P. Picart, J. P. Boileau, and J. C. Pascal, “Full-field vibrometry with digital Fresnel holography,” Appl. Opt. 44, 5763-5772 (2005).
    [CrossRef] [PubMed]
  13. G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96 (1993).
    [CrossRef]
  14. G. Pedrini and H. J. Tiziani, “Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Opt. 33, 7857-7863 (1994).
    [CrossRef] [PubMed]
  15. J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556-6563 (1999).
    [CrossRef]
  16. R. Séfel, J. Kornis, and B. Gombkötő, “Comparative electronic speckle pattern interferometry using adaptive holographic illumination,” Opt. Eng. 50, 015601 (2011).
    [CrossRef]
  17. P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
    [CrossRef]
  18. P. K. Rastogi, Holographic Interferometry (Springer-Verlag, 1994), p. 125.
  19. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504-2506 (1987).
    [CrossRef] [PubMed]
  20. Y. Hu and S. Chen, “The noise sensitivity of the Carré fringe analysis technique,” Meas. Sci. Technol. 8, 871-874 (1997).
    [CrossRef]
  21. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988).
    [CrossRef]

2011 (1)

R. Séfel, J. Kornis, and B. Gombkötő, “Comparative electronic speckle pattern interferometry using adaptive holographic illumination,” Opt. Eng. 50, 015601 (2011).
[CrossRef]

2005 (1)

2003 (1)

2002 (1)

1999 (2)

J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556-6563 (1999).
[CrossRef]

S. Pasko, M. Sutkowski, and M. Kujawinska, “The concept of optical reconstruction of digitally stored holograms,” Proc. SPIE 3744, 154-159 (1999).
[CrossRef]

1997 (1)

Y. Hu and S. Chen, “The noise sensitivity of the Carré fringe analysis technique,” Meas. Sci. Technol. 8, 871-874 (1997).
[CrossRef]

1995 (3)

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367-374 (1995).
[CrossRef]

G. Pedrini and H. J. Tiziani, “Digital double-pulse holographic interferometry using Fresnel and image plane holograms,” Measurement 15, 251-261 (1995).
[CrossRef]

K. J. Gåsvik, Optical Metrology (Wiley, 1995).

1994 (3)

1993 (2)

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96(1993).
[CrossRef]

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96 (1993).
[CrossRef]

1992 (1)

M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553-561 (1992).
[CrossRef]

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988).
[CrossRef]

1987 (1)

1985 (1)

1983 (1)

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1983).

1966 (1)

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
[CrossRef]

Beeck, M.-A.

M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553-561 (1992).
[CrossRef]

Bitou, Y.

Boileau, J. P.

Carré, P.

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
[CrossRef]

Chen, S.

Y. Hu and S. Chen, “The noise sensitivity of the Carré fringe analysis technique,” Meas. Sci. Technol. 8, 871-874 (1997).
[CrossRef]

Creath, K.

Eiju, T.

Gåsvik, K. J.

K. J. Gåsvik, Optical Metrology (Wiley, 1995).

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988).
[CrossRef]

Gombköto, B.

R. Séfel, J. Kornis, and B. Gombkötő, “Comparative electronic speckle pattern interferometry using adaptive holographic illumination,” Opt. Eng. 50, 015601 (2011).
[CrossRef]

Hariharan, P.

Hu, Y.

Y. Hu and S. Chen, “The noise sensitivity of the Carré fringe analysis technique,” Meas. Sci. Technol. 8, 871-874 (1997).
[CrossRef]

Huntley, J. M.

Jones, R.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1983).

Kao, C.-C.

Kaufmann, G. H.

Kerr, D.

Kornis, J.

R. Séfel, J. Kornis, and B. Gombkötő, “Comparative electronic speckle pattern interferometry using adaptive holographic illumination,” Opt. Eng. 50, 015601 (2011).
[CrossRef]

Kujawinska, M.

S. Pasko, M. Sutkowski, and M. Kujawinska, “The concept of optical reconstruction of digitally stored holograms,” Proc. SPIE 3744, 154-159 (1999).
[CrossRef]

Lee, C.-K.

Lee, S.-S.

Leval, J.

Oreb, B. F.

Pascal, J. C.

Pasko, S.

S. Pasko, M. Sutkowski, and M. Kujawinska, “The concept of optical reconstruction of digitally stored holograms,” Proc. SPIE 3744, 154-159 (1999).
[CrossRef]

Pedrini, G.

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367-374 (1995).
[CrossRef]

G. Pedrini and H. J. Tiziani, “Digital double-pulse holographic interferometry using Fresnel and image plane holograms,” Measurement 15, 251-261 (1995).
[CrossRef]

G. Pedrini and H. J. Tiziani, “Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Opt. 33, 7857-7863 (1994).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, “Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Opt. 33, 7857-7863 (1994).
[CrossRef] [PubMed]

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96 (1993).
[CrossRef]

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96(1993).
[CrossRef]

Pfister, B.

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96(1993).
[CrossRef]

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96 (1993).
[CrossRef]

Picart, P.

Rastogi, P. K.

P. K. Rastogi, Holographic Interferometry (Springer-Verlag, 1994), p. 125.

Séfel, R.

R. Séfel, J. Kornis, and B. Gombkötő, “Comparative electronic speckle pattern interferometry using adaptive holographic illumination,” Opt. Eng. 50, 015601 (2011).
[CrossRef]

Sutkowski, M.

S. Pasko, M. Sutkowski, and M. Kujawinska, “The concept of optical reconstruction of digitally stored holograms,” Proc. SPIE 3744, 154-159 (1999).
[CrossRef]

Tiziani, H. J.

G. Pedrini and H. J. Tiziani, “Digital double-pulse holographic interferometry using Fresnel and image plane holograms,” Measurement 15, 251-261 (1995).
[CrossRef]

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367-374 (1995).
[CrossRef]

G. Pedrini and H. J. Tiziani, “Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Opt. 33, 7857-7863 (1994).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, “Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Opt. 33, 7857-7863 (1994).
[CrossRef] [PubMed]

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96 (1993).
[CrossRef]

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96(1993).
[CrossRef]

Werner, C. L.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988).
[CrossRef]

Wu, K.-C.

Wykes, C.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1983).

Yang, C.-S.

Yeh, G.-B.

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988).
[CrossRef]

Zou, Y. L.

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367-374 (1995).
[CrossRef]

Appl. Opt. (7)

J. Mod. Opt. (3)

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96(1993).
[CrossRef]

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367-374 (1995).
[CrossRef]

G. Pedrini, B. Pfister, and H. J. Tiziani, “Double-pulse electronic speckle interferometry,” J. Mod. Opt. 40, 89-96 (1993).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Hu and S. Chen, “The noise sensitivity of the Carré fringe analysis technique,” Meas. Sci. Technol. 8, 871-874 (1997).
[CrossRef]

Measurement (1)

G. Pedrini and H. J. Tiziani, “Digital double-pulse holographic interferometry using Fresnel and image plane holograms,” Measurement 15, 251-261 (1995).
[CrossRef]

Metrologia (1)

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13-23 (1966).
[CrossRef]

Opt. Eng. (2)

R. Séfel, J. Kornis, and B. Gombkötő, “Comparative electronic speckle pattern interferometry using adaptive holographic illumination,” Opt. Eng. 50, 015601 (2011).
[CrossRef]

M.-A. Beeck, “Pulsed holographic vibration analysis on high-speed rotating objects: fringe formation, recording techniques, and practical applications,” Opt. Eng. 31, 553-561 (1992).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

S. Pasko, M. Sutkowski, and M. Kujawinska, “The concept of optical reconstruction of digitally stored holograms,” Proc. SPIE 3744, 154-159 (1999).
[CrossRef]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988).
[CrossRef]

Other (3)

P. K. Rastogi, Holographic Interferometry (Springer-Verlag, 1994), p. 125.

K. J. Gåsvik, Optical Metrology (Wiley, 1995).

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The reconstructed image of a (a) computer-generated hologram used for object illumination and (b) the enlarged part of M ( p , q ) used for pixelwise phase shifting (0, α, 2 α , 3 α ).

Fig. 2
Fig. 2

The optical setup using holographic object illumination wave. BE1, BE2 are beam expanders, BS1, BS2 are beam splitters, and SLM is a spatial light modulator.

Fig. 3
Fig. 3

(a) Wrapped and (b) unwrapped phase maps in the case of double-exposure phase calculation measurement. (c) Phase map of the same deformation using the conventional four-step phase calculation algorithm. The magnitude of the deformation was 2.63 μm and some of the membrane fixing screws were not tight.

Fig. 4
Fig. 4

Phase maps of displacements of a square-shaped Peltier device in the interval of 0.5 and 1.5 s after turning (a) on and (b) off the power supply. The amplitude of the displacements are 4.7 μm and 3.5 μm , respectively.

Fig. 5
Fig. 5

(a) Roman wall painting sample. Phase maps of the front surface displacement after (b) less and (c) more preheating, respectively. (d) Visualization of the deflection whose magnitude is about 0.4 μm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H mod ( p , q ) = H ( p , q ) · e ( i 2 π λ · M ( p , q ) ) ,
I ( p , q ) = a 1 ( p , q ) a 2 ( p , q ) ,
I 1 ( p , q ) = A ( p , q ) + B ( p , q ) · cos ( Δ φ ) ,
I 2 ( p , q ) = A ( p , q ) + B ( p , q ) · cos ( Δ φ + α ) ,
I 3 ( p , q ) = A ( p , q ) + B ( p , q ) · cos ( Δ φ + 2 α ) ,
I 4 ( p , q ) = A ( p , q ) + B ( p , q ) · cos ( Δ φ + 3 α ) ,

Metrics