Abstract

This paper presents a method that allows a conventional dual-camera structured light system to directly acquire the three-dimensional shape of the whole surface of an object with high dynamic range of surface reflectivity. To reduce the degradation in area-based correlation caused by specular highlights and diffused darkness, we first disregard these highly specular and dark pixels. Then, to solve this problem and further obtain unmatched area data, this binocular vision system was also used as two camera-projector monocular systems operated from different viewing angles at the same time to fill in missing data of the binocular reconstruction. This method involves producing measurable images by integrating such techniques as multiple exposures and high dynamic range imaging to ensure the capture of high-quality phase of each point. An image-segmentation technique was also introduced to distinguish which monocular system is suitable to reconstruct a certain lost point accurately. Our experiments demonstrate that these techniques extended the measurable areas on the high dynamic range of surface reflectivity such as specular objects or scenes with high contrast to the whole projector-illuminated field.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse object,” Appl. Opt. 23, 3105–3108 (1984).
    [CrossRef] [PubMed]
  2. E. Hu and Y. He, “Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry,” Opt. Lasers Eng. 47, 57–61 (2009).
    [CrossRef]
  3. J. Vanherzeele, S. Vanlanduit, and P. Guillaume, “Processing optical measurements using a regressive Fourier series: a review,” Opt. Lasers Eng. 47, 461–472 (2009).
    [CrossRef]
  4. D. M. Meadows, W. O. Johnson, and J. B. Allen, “Generation of surface contour by Moire patterns,” Appl. Opt. 9, 942–947(1970).
    [CrossRef] [PubMed]
  5. A. K. Asundi, “Moire methods using computer-generated gratings,” Opt. Eng. 32, 107–116 (1993).
    [CrossRef]
  6. P. Aswendt, R. Hoing, and S. Gartner, “Industrial inspection of specular surfaces using a new calibration procedure,” Proc. SPIE 5856, 393–400 (2005).
    [CrossRef]
  7. O. A. Skydan, M. J. Lalor, and D. R. Burton, “Three-dimensional shape measurement of non-full-field reflective surfaces,” Appl. Opt. 44, 4745–4752 (2005).
    [CrossRef] [PubMed]
  8. O. A. Skydan, M. J. Lalor, and D. R. Burton, “3D shape measurement of automotive glass by using a fringe reflection technique,” Meas. Sci. Technol. 18, 106–114 (2007).
    [CrossRef]
  9. W. Li, T. Bothe, C. von Kopylow, and W. P. O. Juptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).
    [CrossRef]
  10. A. Moreno, J. Campos, and L. P. Yaroslavsky, “Frequency response of five integration methods to obtain the profile from its slope,” Opt. Eng. 44, 033604 (2005).
    [CrossRef]
  11. H. W. Guo, F. Peng, and T. Tao, “Specular surface measurement by using least squares light tracking technique,” Opt. Lasers Eng. 48, 166–171 (2010).
    [CrossRef]
  12. D. Caspi, N. Kyriati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Machine Intell. 20, 470–480 (1998).
    [CrossRef]
  13. E. Horn and N. Kiryati, “Towards optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
    [CrossRef]
  14. T. P. Koninckx, P. Peers, P. Dutre, and L. Van Gool, “Scene-adapted structured light,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 611–618.
  15. M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object look like another,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. I-452–I-459.
  16. D. Bhat and S. Nayar, “Stereo in the presence of specular reflection,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1995), pp. 1086–1092.
    [CrossRef]
  17. D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. 195–202.
  18. R. M. Kowarschik, J. Gerber, G. Notni, and W. Schreiber, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
    [CrossRef]
  19. S. Zhang and S-T Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
    [CrossRef]
  20. A. R. Varkonyi-Koczy, “Improved fuzzy logic supported HDR colored information enhancement,” in Proceedings of IEEE International Conference on Instrumentation and Measurement Technology (IEEE, 2009), pp. 361–366.
  21. J. Batlle, E. Mouaddib, and J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: A survey,” Patt. Recog. 31, 963–982 (1998).
    [CrossRef]
  22. J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
    [CrossRef]
  23. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
    [CrossRef]
  24. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
    [CrossRef]
  25. S. Zhang and S-T Yau, “Absolute phase assisted three-dimensional data registration for a dual-camera structured light system,” Appl. Opt. 47, 3134–3142 (2008).
    [CrossRef] [PubMed]
  26. N. Ostu, “A thresholding selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. A 9, 62–66 (1979).
    [CrossRef]
  27. K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–561 (2010).
    [CrossRef]

2010

H. W. Guo, F. Peng, and T. Tao, “Specular surface measurement by using least squares light tracking technique,” Opt. Lasers Eng. 48, 166–171 (2010).
[CrossRef]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–561 (2010).
[CrossRef]

2009

S. Zhang and S-T Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[CrossRef]

A. R. Varkonyi-Koczy, “Improved fuzzy logic supported HDR colored information enhancement,” in Proceedings of IEEE International Conference on Instrumentation and Measurement Technology (IEEE, 2009), pp. 361–366.

E. Hu and Y. He, “Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry,” Opt. Lasers Eng. 47, 57–61 (2009).
[CrossRef]

J. Vanherzeele, S. Vanlanduit, and P. Guillaume, “Processing optical measurements using a regressive Fourier series: a review,” Opt. Lasers Eng. 47, 461–472 (2009).
[CrossRef]

2008

2007

O. A. Skydan, M. J. Lalor, and D. R. Burton, “3D shape measurement of automotive glass by using a fringe reflection technique,” Meas. Sci. Technol. 18, 106–114 (2007).
[CrossRef]

2006

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

2005

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

P. Aswendt, R. Hoing, and S. Gartner, “Industrial inspection of specular surfaces using a new calibration procedure,” Proc. SPIE 5856, 393–400 (2005).
[CrossRef]

O. A. Skydan, M. J. Lalor, and D. R. Burton, “Three-dimensional shape measurement of non-full-field reflective surfaces,” Appl. Opt. 44, 4745–4752 (2005).
[CrossRef] [PubMed]

A. Moreno, J. Campos, and L. P. Yaroslavsky, “Frequency response of five integration methods to obtain the profile from its slope,” Opt. Eng. 44, 033604 (2005).
[CrossRef]

T. P. Koninckx, P. Peers, P. Dutre, and L. Van Gool, “Scene-adapted structured light,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 611–618.

2004

M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object look like another,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. I-452–I-459.

W. Li, T. Bothe, C. von Kopylow, and W. P. O. Juptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).
[CrossRef]

2003

D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. 195–202.

2000

R. M. Kowarschik, J. Gerber, G. Notni, and W. Schreiber, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
[CrossRef]

1999

E. Horn and N. Kiryati, “Towards optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

1998

D. Caspi, N. Kyriati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Machine Intell. 20, 470–480 (1998).
[CrossRef]

J. Batlle, E. Mouaddib, and J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: A survey,” Patt. Recog. 31, 963–982 (1998).
[CrossRef]

1995

D. Bhat and S. Nayar, “Stereo in the presence of specular reflection,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1995), pp. 1086–1092.
[CrossRef]

1993

A. K. Asundi, “Moire methods using computer-generated gratings,” Opt. Eng. 32, 107–116 (1993).
[CrossRef]

1984

1979

N. Ostu, “A thresholding selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. A 9, 62–66 (1979).
[CrossRef]

1970

Allen, J. B.

Asundi, A. K.

A. K. Asundi, “Moire methods using computer-generated gratings,” Opt. Eng. 32, 107–116 (1993).
[CrossRef]

Aswendt, P.

P. Aswendt, R. Hoing, and S. Gartner, “Industrial inspection of specular surfaces using a new calibration procedure,” Proc. SPIE 5856, 393–400 (2005).
[CrossRef]

Batlle, J.

J. Batlle, E. Mouaddib, and J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: A survey,” Patt. Recog. 31, 963–982 (1998).
[CrossRef]

Belhumeur, P.

M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object look like another,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. I-452–I-459.

Bhat, D.

D. Bhat and S. Nayar, “Stereo in the presence of specular reflection,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1995), pp. 1086–1092.
[CrossRef]

Bothe, T.

W. Li, T. Bothe, C. von Kopylow, and W. P. O. Juptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).
[CrossRef]

Burton, D. R.

O. A. Skydan, M. J. Lalor, and D. R. Burton, “3D shape measurement of automotive glass by using a fringe reflection technique,” Meas. Sci. Technol. 18, 106–114 (2007).
[CrossRef]

O. A. Skydan, M. J. Lalor, and D. R. Burton, “Three-dimensional shape measurement of non-full-field reflective surfaces,” Appl. Opt. 44, 4745–4752 (2005).
[CrossRef] [PubMed]

Campos, J.

A. Moreno, J. Campos, and L. P. Yaroslavsky, “Frequency response of five integration methods to obtain the profile from its slope,” Opt. Eng. 44, 033604 (2005).
[CrossRef]

Caspi, D.

D. Caspi, N. Kyriati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Machine Intell. 20, 470–480 (1998).
[CrossRef]

Davis, J.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Dutre, P.

T. P. Koninckx, P. Peers, P. Dutre, and L. Van Gool, “Scene-adapted structured light,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 611–618.

Gartner, S.

P. Aswendt, R. Hoing, and S. Gartner, “Industrial inspection of specular surfaces using a new calibration procedure,” Proc. SPIE 5856, 393–400 (2005).
[CrossRef]

Gerber, J.

R. M. Kowarschik, J. Gerber, G. Notni, and W. Schreiber, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Grossberg, M.

M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object look like another,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. I-452–I-459.

Guillaume, P.

J. Vanherzeele, S. Vanlanduit, and P. Guillaume, “Processing optical measurements using a regressive Fourier series: a review,” Opt. Lasers Eng. 47, 461–472 (2009).
[CrossRef]

Guo, H. W.

H. W. Guo, F. Peng, and T. Tao, “Specular surface measurement by using least squares light tracking technique,” Opt. Lasers Eng. 48, 166–171 (2010).
[CrossRef]

Halioua, M.

Hao, Q.

Hassebrook, L. G.

He, Y.

E. Hu and Y. He, “Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry,” Opt. Lasers Eng. 47, 57–61 (2009).
[CrossRef]

Hoing, R.

P. Aswendt, R. Hoing, and S. Gartner, “Industrial inspection of specular surfaces using a new calibration procedure,” Proc. SPIE 5856, 393–400 (2005).
[CrossRef]

Horn, E.

E. Horn and N. Kiryati, “Towards optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

Hu, E.

E. Hu and Y. He, “Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry,” Opt. Lasers Eng. 47, 57–61 (2009).
[CrossRef]

Huang, P. S.

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

Johnson, W. O.

Juptner, W. P. O.

W. Li, T. Bothe, C. von Kopylow, and W. P. O. Juptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).
[CrossRef]

Kiryati, N.

E. Horn and N. Kiryati, “Towards optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

Koninckx, T. P.

T. P. Koninckx, P. Peers, P. Dutre, and L. Van Gool, “Scene-adapted structured light,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 611–618.

Kowarschik, R. M.

R. M. Kowarschik, J. Gerber, G. Notni, and W. Schreiber, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Kyriati, N.

D. Caspi, N. Kyriati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Machine Intell. 20, 470–480 (1998).
[CrossRef]

Lalor, M. J.

O. A. Skydan, M. J. Lalor, and D. R. Burton, “3D shape measurement of automotive glass by using a fringe reflection technique,” Meas. Sci. Technol. 18, 106–114 (2007).
[CrossRef]

O. A. Skydan, M. J. Lalor, and D. R. Burton, “Three-dimensional shape measurement of non-full-field reflective surfaces,” Appl. Opt. 44, 4745–4752 (2005).
[CrossRef] [PubMed]

Lau, D. L.

Li, W.

W. Li, T. Bothe, C. von Kopylow, and W. P. O. Juptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).
[CrossRef]

Liu, H. C.

Liu, K.

Meadows, D. M.

Moreno, A.

A. Moreno, J. Campos, and L. P. Yaroslavsky, “Frequency response of five integration methods to obtain the profile from its slope,” Opt. Eng. 44, 033604 (2005).
[CrossRef]

Mouaddib, E.

J. Batlle, E. Mouaddib, and J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: A survey,” Patt. Recog. 31, 963–982 (1998).
[CrossRef]

Nayar, S.

M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object look like another,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. I-452–I-459.

D. Bhat and S. Nayar, “Stereo in the presence of specular reflection,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1995), pp. 1086–1092.
[CrossRef]

Nehab, D.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Notni, G.

R. M. Kowarschik, J. Gerber, G. Notni, and W. Schreiber, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Ostu, N.

N. Ostu, “A thresholding selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. A 9, 62–66 (1979).
[CrossRef]

Peers, P.

T. P. Koninckx, P. Peers, P. Dutre, and L. Van Gool, “Scene-adapted structured light,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 611–618.

Peng, F.

H. W. Guo, F. Peng, and T. Tao, “Specular surface measurement by using least squares light tracking technique,” Opt. Lasers Eng. 48, 166–171 (2010).
[CrossRef]

Peri, H.

M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object look like another,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. I-452–I-459.

Ramamoorthi, R.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Rusinkiewicz, S.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Salvi, J.

J. Batlle, E. Mouaddib, and J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: A survey,” Patt. Recog. 31, 963–982 (1998).
[CrossRef]

Scharstein, D.

D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. 195–202.

Schreiber, W.

R. M. Kowarschik, J. Gerber, G. Notni, and W. Schreiber, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Shamir, J.

D. Caspi, N. Kyriati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Machine Intell. 20, 470–480 (1998).
[CrossRef]

Skydan, O. A.

O. A. Skydan, M. J. Lalor, and D. R. Burton, “3D shape measurement of automotive glass by using a fringe reflection technique,” Meas. Sci. Technol. 18, 106–114 (2007).
[CrossRef]

O. A. Skydan, M. J. Lalor, and D. R. Burton, “Three-dimensional shape measurement of non-full-field reflective surfaces,” Appl. Opt. 44, 4745–4752 (2005).
[CrossRef] [PubMed]

Srinivasan, V.

Szeliski, R.

D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. 195–202.

Tao, T.

H. W. Guo, F. Peng, and T. Tao, “Specular surface measurement by using least squares light tracking technique,” Opt. Lasers Eng. 48, 166–171 (2010).
[CrossRef]

Van Gool, L.

T. P. Koninckx, P. Peers, P. Dutre, and L. Van Gool, “Scene-adapted structured light,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 611–618.

Vanherzeele, J.

J. Vanherzeele, S. Vanlanduit, and P. Guillaume, “Processing optical measurements using a regressive Fourier series: a review,” Opt. Lasers Eng. 47, 461–472 (2009).
[CrossRef]

Vanlanduit, S.

J. Vanherzeele, S. Vanlanduit, and P. Guillaume, “Processing optical measurements using a regressive Fourier series: a review,” Opt. Lasers Eng. 47, 461–472 (2009).
[CrossRef]

Varkonyi-Koczy, A. R.

A. R. Varkonyi-Koczy, “Improved fuzzy logic supported HDR colored information enhancement,” in Proceedings of IEEE International Conference on Instrumentation and Measurement Technology (IEEE, 2009), pp. 361–366.

von Kopylow, C.

W. Li, T. Bothe, C. von Kopylow, and W. P. O. Juptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).
[CrossRef]

Wang, Y.

Yaroslavsky, L. P.

A. Moreno, J. Campos, and L. P. Yaroslavsky, “Frequency response of five integration methods to obtain the profile from its slope,” Opt. Eng. 44, 033604 (2005).
[CrossRef]

Yau, S-T

Zhang, S.

S. Zhang and S-T Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[CrossRef]

S. Zhang and S-T Yau, “Absolute phase assisted three-dimensional data registration for a dual-camera structured light system,” Appl. Opt. 47, 3134–3142 (2008).
[CrossRef] [PubMed]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
[CrossRef]

Appl. Opt.

IEEE Trans. Pattern Anal. Machine Intell.

D. Caspi, N. Kyriati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Machine Intell. 20, 470–480 (1998).
[CrossRef]

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22, 1330–1334(2000).
[CrossRef]

IEEE Trans. Syst. Man Cybern. A

N. Ostu, “A thresholding selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. A 9, 62–66 (1979).
[CrossRef]

Image Vision Comput.

E. Horn and N. Kiryati, “Towards optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

O. A. Skydan, M. J. Lalor, and D. R. Burton, “3D shape measurement of automotive glass by using a fringe reflection technique,” Meas. Sci. Technol. 18, 106–114 (2007).
[CrossRef]

Opt. Eng.

A. Moreno, J. Campos, and L. P. Yaroslavsky, “Frequency response of five integration methods to obtain the profile from its slope,” Opt. Eng. 44, 033604 (2005).
[CrossRef]

A. K. Asundi, “Moire methods using computer-generated gratings,” Opt. Eng. 32, 107–116 (1993).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[CrossRef]

R. M. Kowarschik, J. Gerber, G. Notni, and W. Schreiber, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

S. Zhang and S-T Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[CrossRef]

Opt. Lasers Eng.

E. Hu and Y. He, “Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry,” Opt. Lasers Eng. 47, 57–61 (2009).
[CrossRef]

J. Vanherzeele, S. Vanlanduit, and P. Guillaume, “Processing optical measurements using a regressive Fourier series: a review,” Opt. Lasers Eng. 47, 461–472 (2009).
[CrossRef]

H. W. Guo, F. Peng, and T. Tao, “Specular surface measurement by using least squares light tracking technique,” Opt. Lasers Eng. 48, 166–171 (2010).
[CrossRef]

Patt. Recog.

J. Batlle, E. Mouaddib, and J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: A survey,” Patt. Recog. 31, 963–982 (1998).
[CrossRef]

Proc. SPIE

W. Li, T. Bothe, C. von Kopylow, and W. P. O. Juptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).
[CrossRef]

P. Aswendt, R. Hoing, and S. Gartner, “Industrial inspection of specular surfaces using a new calibration procedure,” Proc. SPIE 5856, 393–400 (2005).
[CrossRef]

Other

A. R. Varkonyi-Koczy, “Improved fuzzy logic supported HDR colored information enhancement,” in Proceedings of IEEE International Conference on Instrumentation and Measurement Technology (IEEE, 2009), pp. 361–366.

T. P. Koninckx, P. Peers, P. Dutre, and L. Van Gool, “Scene-adapted structured light,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 611–618.

M. Grossberg, H. Peri, S. Nayar, and P. Belhumeur, “Making one object look like another,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. I-452–I-459.

D. Bhat and S. Nayar, “Stereo in the presence of specular reflection,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1995), pp. 1086–1092.
[CrossRef]

D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. 195–202.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Polar plots of the three reflection components.

Fig. 2
Fig. 2

System setup.

Fig. 3
Fig. 3

Monocular stereo vision.

Fig. 4
Fig. 4

Experimental system.

Fig. 5
Fig. 5

The measured vase (a), its left and right fringe images (b, d), and its left and right synthesized fringe image (c, e).

Fig. 6
Fig. 6

Left and right unwrapped phases maps of the vase (a, b), the 3D results reconstructed from left and right monocular system (c, d) and binocular system (e), respectively, and the compensation result from the combination of binocular and monocular system (f).

Fig. 7
Fig. 7

Zoom-in view of a small region of binocular reconstruction result (a) and compensation result from the combination of binocular and monocular systems (b).

Fig. 8
Fig. 8

The turbine blade (a) and the reconstructed 3D results obtained after single exposure from the binocular system (b), four exposures from the binocular system (c), and four exposures from the binocular and monocular systems (d), respectively.

Tables (1)

Tables Icon

Table 1 Comparison of the Reconstructed Turbine Blade by the Tree Method

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

M n = { 1 , I min I n ( x , y ) I max 0 , otherwise .
M n ( x , y ) = { 1 , I min I n ( x , y ) I max a n d M l ( x , y ) = 0 ( l = 1 , 2 , ... , n 1 ) 0 , otherwise ,
P n k ( x , y ) P n + 1 k ( x , y ) .
P f k ( x , y ) = P m k ( x , y ) , m = min ( n ) ,
H k ( x , y ) = n = 1 N M n ( x , y ) P n k ( x , y ) ( k = 1 , 2 , 3 , 4 ) .
f ( x , y ) N × N Φ ,
f t ( x , y ) = { b 0 , if     f ( x , y ) < t ; b 1 , otherwise .
p i = f i / i = 0 L 1 f i q ( t ) = i = 0 t p i
μ 0 = i = 0 t i p i q ( t ) = μ 0 ( t ) q ( t ) μ 1 = i = t L 1 i p i 1 q ( t ) = μ 1 ( t ) 1 q ( t ) ,
σ t 2 = q ( t ) ( 1 q ( t ) ) ( μ 1 μ 0 ) 2 .
σ t * 2 = max ( σ t 2 ) .
P lose = { P r , label r = b 1 , label l = b 0 P l label r = b 0 , label l = b 1 omitted , otherwise .

Metrics