Abstract

One-dimensional arrays of nanoslits fabricated on silicon nitride membranes show extraordinary optical transmission. Optical characterization techniques have been used to characterize the transmission spectra and the near-field optical configuration. Experimental results have been compared with numerical simulations in order to elucidate the different modes of light propagation. Near- and far- field optical distribution is studied as a function of the polarization of light.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  3. K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
    [CrossRef]
  4. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
    [CrossRef]
  5. A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
    [CrossRef]
  6. S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
    [CrossRef]
  7. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  9. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13, 7760–7771 (2005).
    [CrossRef] [PubMed]
  10. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
    [CrossRef] [PubMed]
  11. H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
    [CrossRef]
  12. A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [CrossRef]
  13. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
    [CrossRef]
  14. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
    [CrossRef] [PubMed]
  15. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  16. F. J. Garcia-Vidal and L. Marin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  17. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18, 19558 (2010).
    [CrossRef] [PubMed]
  18. Finite Elements code COMSOL Multiphysics, RF package, version 3.5a.
  19. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76(2005).
    [CrossRef] [PubMed]
  20. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslits apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  21. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  22. T. Ongarello, F. Romanato, P. Zilio, and M. Massari, “Polarization independence of extraordinary transmission trough 1D metallic gratings,” Opt. Express 19, 9426–9433(2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18, 19558 (2010).
[CrossRef] [PubMed]

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

2007 (4)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
[CrossRef] [PubMed]

2005 (4)

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslits apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76(2005).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13, 7760–7771 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef] [PubMed]

2002 (2)

F. J. Garcia-Vidal and L. Marin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

2001 (1)

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

1988 (1)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Barbara, A.

A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Bardou, N.

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Busch, K.

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Bustarett, E.

A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Collin, S.

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76(2005).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Collins, S.

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Crouse, D.

Degiron, A.

A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. J. Garcia-Vidal and L. Marin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Greffet, J. J.

Grupp, D. E.

H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Haidar, R.

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslits apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Keshavareddy, P.

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslits apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Lezec, H.

A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Linden, S.

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Lopez-Rios, T.

A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Marin-Moreno, L.

F. J. Garcia-Vidal and L. Marin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Marquier, F.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Massari, M.

Mingaleev, S. F.

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Ongarello, T.

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Pardo, F.

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76(2005).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Pelouard, J.

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Pelouard, J. L.

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76(2005).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Quemerais, P.

A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslits apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Romanato, F.

Rommeluère, S.

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Sammito, D.

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tineke, T.

H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Tkeshelashvili, L.

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Vincent, G.

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Von Freymann, G.

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Wegener, M.

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yamamoto, N.

A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Zacco, G.

Zilio, P.

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (2)

A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Opt. Express (6)

Phys. Rep. (1)

K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).
[CrossRef]

Phys. Rev. B (4)

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

F. J. Garcia-Vidal and L. Marin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998).
[CrossRef]

Phys. Rev. Lett. (4)

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslits apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Finite Elements code COMSOL Multiphysics, RF package, version 3.5a.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Linear 1D array patterned on silicon nitride membranes.

Fig. 2
Fig. 2

Transmission spectra for 1D gold slit array. Dashed and solid lines correspond to FEM simulation and experimental data, respectively. (a) and (b) refer to TE and to TM polarization, respectively. In (b) the arrows indicate the different resonances that are directly related to the EM field distribution of Fig. 3.

Fig. 3
Fig. 3

(a) Norm of TM magnetic field at the SPP resonance (corresponding to the wavelength 530 nm ); (b) norm of TM magnetic field at the hybrid mode resonance (corresponding to the wavelength 580 nm ); (c) norm of TM magnetic field at the cavity mode resonance (corresponding to the wavelength 1000 nm ); (d) norm of TE electric field at the cavity mode resonance (corresponding to the wavelength 530 nm ).

Fig. 4
Fig. 4

(a) SNOM light intensity image of 1D gold slit grating; (b) comparison of experimental (solid line) and simulated (dotted line) SNOM light intensity profile. The FEM simulation plots the magnitude of the square of the electric field amplitude. The major peaks and the brighter areas correspond to SPP excitations on the gold ridges of the array, while the small peaks and darker areas correspond to the light directly scattered inside the slits.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = 1 ε s | τ 12 | 2 i = i = + cos θ i | τ 23 , i | 2 | 1 | ρ 12 | | ρ 23 | e i ϕ tot | 2 ,
ϕ tot = arg ( ρ 12 ) + arg ( ρ 23 ) + 2 k 0 h ,
k 0 sin θ + n G = k 0 Re ( ε d ε m ε d + ε m ) ,

Metrics