Abstract

Nanosecond-laser-induced damage measurements in the bulk of KTiOPO4 (KTP) crystals are reported using incident 532nm light or using incident 1064nm light, which pumps more or less efficient second harmonic generation. No damage threshold fatigue effect is observed with pure 532nm irradiation. The damage threshold of Z-polarized light is higher than the one for X- or Y-polarized light. During frequency doubling, the damage threshold was found to be lower than for pure 1064 or 532nm irradiation. More data to quantify the cooperative damage mechanism were generated by performing fluence ramp experiments with varying conditions and monitoring the conversion efficiency. All damage thresholds plotted against the conversion efficiency align close to a characteristic curve.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. BCC Research LLC, http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display/227060/articles/optoelectronics-report/volume-12/issue-9/features/major-growth-predicted-for-nonlinear-materials.html, accessed 2011.
  2. BCC Research LLC, http://www.bccresearch.com/report/SMC019C.html, accessed 2011.
  3. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [CrossRef]
  4. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
    [CrossRef]
  5. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4,” Appl. Opt. 48, 4263–4269 (2009).
    [CrossRef] [PubMed]
  6. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express 18, 26791–26798 (2010).
    [CrossRef]
  7. G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals—gray tracks,” J. Appl. Phys. 72, 2705–2712 (1992).
    [CrossRef]
  8. V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
    [CrossRef]
  9. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96, 2023–2028 (2004).
    [CrossRef]
  10. P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78, 2420–2421 (2001).
    [CrossRef]
  11. J. Chen, A. J. Pearlman, A. Ling, J. Y. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
    [CrossRef] [PubMed]
  12. S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
    [CrossRef]
  13. “Determination of laser-damage threshold of optical surfaces part 2: S-on-1 test,” ISO 11254-2 (International Organization for Standardization, 2001).
  14. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603(2008).
    [CrossRef]
  15. A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, and M. Commandré, “Nanosecond laser induced damage in RbTiOPO4: the missing influence of crystal quality,” Opt. Express 17, 18263–18270 (2009).
    [CrossRef] [PubMed]
  16. L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
    [CrossRef] [PubMed]
  17. X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
    [CrossRef]
  18. S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39, 733–740 (2003).
    [CrossRef]
  19. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser induced damage threshold of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
    [CrossRef] [PubMed]
  20. P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
    [CrossRef]
  21. S. Reyne, G. Duchateau, J. Y. Natoli, and L. Lamaignere, “Pump–pump experiment in KH2PO4 crystals: coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96, 121102 (2010).
    [CrossRef]

2010 (2)

S. Reyne, G. Duchateau, J. Y. Natoli, and L. Lamaignere, “Pump–pump experiment in KH2PO4 crystals: coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96, 121102 (2010).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express 18, 26791–26798 (2010).
[CrossRef]

2009 (3)

2008 (2)

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603(2008).
[CrossRef]

2007 (2)

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Theodore, and H. Albrecht, “Laser induced damage threshold of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849–13857 (2007).
[CrossRef] [PubMed]

2006 (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

2004 (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96, 2023–2028 (2004).
[CrossRef]

2003 (2)

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39, 733–740 (2003).
[CrossRef]

2001 (2)

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78, 2420–2421 (2001).
[CrossRef]

“Determination of laser-damage threshold of optical surfaces part 2: S-on-1 test,” ISO 11254-2 (International Organization for Standardization, 2001).

1998 (1)

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
[CrossRef]

1993 (1)

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

1992 (1)

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals—gray tracks,” J. Appl. Phys. 72, 2705–2712 (1992).
[CrossRef]

1989 (1)

Akhouayri, H.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4,” Appl. Opt. 48, 4263–4269 (2009).
[CrossRef] [PubMed]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603(2008).
[CrossRef]

Albrecht, H.

Babb, M.

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals—gray tracks,” J. Appl. Phys. 72, 2705–2712 (1992).
[CrossRef]

Bercegol, H.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

Bierlein, J. D.

Bouillet, S.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

Champert, P. A.

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78, 2420–2421 (2001).
[CrossRef]

Chen, J.

Commandré, M.

Courchinoux, R.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

DeMange, P.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

Demos, S. G.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

Denks, V.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
[CrossRef]

Ding, Y. J.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

Donval, T.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

Duchateau, G.

S. Reyne, G. Duchateau, J. Y. Natoli, and L. Lamaignere, “Pump–pump experiment in KH2PO4 crystals: coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96, 121102 (2010).
[CrossRef]

Dudelzak, A.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
[CrossRef]

Fan, J. Y.

Favre, S.

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39, 733–740 (2003).
[CrossRef]

Feit, M. D.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

Fujita, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

Furusawa, S.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Hayasi, H.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Hildenbrand, A.

Hu, X. B.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

Ishibashi, Y.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Jiang, H. D.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

Josse, M.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

Kamimura, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

Lamaignere, L.

S. Reyne, G. Duchateau, J. Y. Natoli, and L. Lamaignere, “Pump–pump experiment in KH2PO4 crystals: coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96, 121102 (2010).
[CrossRef]

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

Laurell, F.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96, 2023–2028 (2004).
[CrossRef]

Ling, A.

Liu, H.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

Loiacono, D. N.

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals—gray tracks,” J. Appl. Phys. 72, 2705–2712 (1992).
[CrossRef]

Loiacono, G. M.

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals—gray tracks,” J. Appl. Phys. 72, 2705–2712 (1992).
[CrossRef]

McGee, T.

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals—gray tracks,” J. Appl. Phys. 72, 2705–2712 (1992).
[CrossRef]

Migdall, A.

Miyamoto, A.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Mu, X. D.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

Murk, V.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
[CrossRef]

Nakatsuka, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

Natoli, J. Y.

S. Reyne, G. Duchateau, J. Y. Natoli, and L. Lamaignere, “Pump–pump experiment in KH2PO4 crystals: coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96, 121102 (2010).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4,” Appl. Opt. 48, 4263–4269 (2009).
[CrossRef] [PubMed]

Natoli, J.-Y.

Negres, R. A.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

Pasiskevicius, V.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96, 2023–2028 (2004).
[CrossRef]

Pearlman, A. J.

Poncetta, J. C.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

Popov, S. V.

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78, 2420–2421 (2001).
[CrossRef]

Proulx, P. P.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
[CrossRef]

Radousky, H. B.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

Reyne, S.

S. Reyne, G. Duchateau, J. Y. Natoli, and L. Lamaignere, “Pump–pump experiment in KH2PO4 crystals: coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96, 121102 (2010).
[CrossRef]

Rubenchik, A. M.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

Salathe, R. P.

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39, 733–740 (2003).
[CrossRef]

Sasaki, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Sidler, T. C.

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39, 733–740 (2003).
[CrossRef]

Taylor, J. R.

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78, 2420–2421 (2001).
[CrossRef]

Theodore, F.

Théodore, F.

Vanherzeele, H.

Vassiltsenko, V.

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
[CrossRef]

Wagner, F. R.

Wang, J. Y.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96, 2023–2028 (2004).
[CrossRef]

Yoshida, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

Yoshida, K.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

Yoshimura, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

Zhang, H. J.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78, 2420–2421 (2001).
[CrossRef]

S. Reyne, G. Duchateau, J. Y. Natoli, and L. Lamaignere, “Pump–pump experiment in KH2PO4 crystals: coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96, 121102 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Favre, T. C. Sidler, and R. P. Salathe, “High-power long-pulse second harmonic generation and optical damage with free-running Nd:YAG laser,” IEEE J. Quantum Electron. 39, 733–740 (2003).
[CrossRef]

J. Appl. Phys. (3)

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103, 083122 (2008).
[CrossRef]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96, 2023–2028 (2004).
[CrossRef]

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals—gray tracks,” J. Appl. Phys. 72, 2705–2712 (1992).
[CrossRef]

J. Cryst. Growth (1)

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137–140 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic-conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single-crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. Part 1 45, 766–769 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. Sect. B (1)

V. Murk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. Sect. B 141, 472–476 (1998).
[CrossRef]

Opt. Eng. (1)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603(2008).
[CrossRef]

Opt. Express (4)

Rev. Sci. Instrum. (1)

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105(2007).
[CrossRef] [PubMed]

Other (3)

BCC Research LLC, http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display/227060/articles/optoelectronics-report/volume-12/issue-9/features/major-growth-predicted-for-nonlinear-materials.html, accessed 2011.

BCC Research LLC, http://www.bccresearch.com/report/SMC019C.html, accessed 2011.

“Determination of laser-damage threshold of optical surfaces part 2: S-on-1 test,” ISO 11254-2 (International Organization for Standardization, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the setup pointing out the different configurations. The setup can be pumped directly with the 1064 nm light or with the generated 532 nm light. Only one pump wavelength was used at a time. For S-on-1 measurements, automatic damage detection was used (LA, BF, and CCD). For R-on-1 type measurements, a DM was added to reflect the generated 532 nm light onto PD2 and laser damage was detected by the appearance of scattered green light on the screen.

Fig. 2
Fig. 2

S-on-1 damage probability curves for Y-cut KTP and X-polarized 532 nm light. The measured laser damage threshold is independent of the number of pulses per site S. The solid line is a guide to the eye. The probability error bars delimit intervals corresponding to a confidence of 68%. The fluence error bar corresponds to a relative uncertainty of ± 10 % .

Fig. 3
Fig. 3

200-on-1 laser damage curves at 532 nm for different polarizations. Frequency conversion effects are minimized by using crystals that are cut along the principal axes. The arrows indicate the approximate laser damage thresholds.

Fig. 4
Fig. 4

200-on-1 laser damage curves in a type II SHG-cut KTP crystal. The graph compares the situations without frequency conversion (triangles) to two situations with frequency conversion (squares). The arrows indicate the approximate damage thresholds. The damage thresholds for the two situations with frequency conversion are practically identical.

Fig. 5
Fig. 5

Conversion efficiency as a function of fluence for two different polarization directions. Laser damage occurred at the last data point of both curves. The fluence value of the point before was used as an approximation of the laser damage threshold.

Fig. 6
Fig. 6

The approximate laser damage threshold (incident pump fluence) for different conversion efficiencies. The star symbols indicate data that have been extracted from the 200- on-1 curves shown in Fig. 4. The uncertainty for the estimated efficiency of the degenerate optical parametrical generation is indicated by the width of the red background of the black star symbol. The dashed curve is a guide to the eye.

Fig. 7
Fig. 7

γ parameter as a function of the 1064 nm fluence of the mixture created by frequency conversion. The thick dashed line, a shifted and scaled hyperbola fit, is a guide to the eye. The thin dashed line ( γ = 0.64 ) represents a noncooperative damage mechanism.

Metrics