Abstract

Obtaining higher quantum efficiency and more stability has been an important developing direction in the investigation of GaAs photocathodes. By solving the one-dimensional diffusion equation for no- equilibrium minority carriers of reflection-mode GaAs photocathode materials, we can get the equations of the surface photovoltage curve before activation and the spectral response curve after activation for uniform and exponential doping GaAs materials. Through experiments and fitting calculations for two doping structural materials designed by us, the parameters of the body materials are exactly measured by the surface photovoltage curves, and the curves for surface escape probability are also accurately fitted by the comparative research before and after activation. The differences for the fitting results of two doping structures are also well analyzed. This comparative research can form a closed-loop research for GaAs photocathodes and will help us to deeply study the varied doping structures and optimize Cs-O activation technology for GaAs photocathodes in the future.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zou, B. K. Chang, and Z. Yang, “Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes,” Acta Phys. Sin. 56, 2992–2997 (2007).
  2. Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient doping GaAs photocathode and uniform-doping photocathode,” Appl. Opt. 46, 7035–7039 (2007).
    [CrossRef] [PubMed]
  3. I. Kudman and T. Seidel, “Absorption edge in degenerate p-type GaAs,” J. Appl. Phys. 33, 771–773 (1962).
    [CrossRef]
  4. Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
    [CrossRef]
  5. H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Adv. Electron. Electron. Phys. 64, 63–69 (1995).
    [CrossRef]
  6. J. Niu, Y. Zhang, B. Chang, Z. Yang, and Y. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
    [CrossRef] [PubMed]
  7. Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
    [CrossRef]
  8. J. Zou, B. Chang, and Z. Yang, “Evolution of photocurrent during coadsorption of Cs and O on GaAs (100),” Chin. Phys. Lett. 24, 1731–1734 (2007).
    [CrossRef]
  9. J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007).
    [CrossRef]
  10. W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
    [CrossRef]
  11. H. O. Olafsson, J. T. Gudmundsson, H. G. Svavarsson, and H. P. Gislason, “Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy,” Physica B 273, 689–692 (1999).
    [CrossRef]
  12. A. Kenta, S. Takushi, K. Hiroaki, and M. Mizuho, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale,” Physica B 376, 893–896 (2006).
    [CrossRef]
  13. M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
    [CrossRef]
  14. G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
    [CrossRef]
  15. Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
    [CrossRef]
  16. A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
    [CrossRef]
  17. D. G. Fisher, “The effect of Cs-O activation temperature on the surface escape probability of NEA (In, GaAs) photocathodes,” IEEE Trans. Electron Devices 21, 541–542 (1974).
    [CrossRef]
  18. J. Niu, Y. Zhang, B. Chang, and Y. Xiong, “Influence of varied doping structure on photoemissive property of photocathode,” Chin. Physica B 20, 044209 (2011).
    [CrossRef]
  19. W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559 (1986).
    [CrossRef]
  20. J. J. Zou, B. K. Chang, and X. Q. Du, “Activation of gradient doping GaAs photocathodes grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 25, 401–404(2005).
  21. Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
    [CrossRef]

2011 (1)

J. Niu, Y. Zhang, B. Chang, and Y. Xiong, “Influence of varied doping structure on photoemissive property of photocathode,” Chin. Physica B 20, 044209 (2011).
[CrossRef]

2010 (1)

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

2009 (4)

J. Niu, Y. Zhang, B. Chang, Z. Yang, and Y. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
[CrossRef]

M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
[CrossRef]

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

2007 (4)

J. Zou, B. Chang, and Z. Yang, “Evolution of photocurrent during coadsorption of Cs and O on GaAs (100),” Chin. Phys. Lett. 24, 1731–1734 (2007).
[CrossRef]

J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007).
[CrossRef]

J. J. Zou, B. K. Chang, and Z. Yang, “Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes,” Acta Phys. Sin. 56, 2992–2997 (2007).

Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient doping GaAs photocathode and uniform-doping photocathode,” Appl. Opt. 46, 7035–7039 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Kenta, S. Takushi, K. Hiroaki, and M. Mizuho, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale,” Physica B 376, 893–896 (2006).
[CrossRef]

2005 (1)

J. J. Zou, B. K. Chang, and X. Q. Du, “Activation of gradient doping GaAs photocathodes grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 25, 401–404(2005).

2001 (1)

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

1999 (1)

H. O. Olafsson, J. T. Gudmundsson, H. G. Svavarsson, and H. P. Gislason, “Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy,” Physica B 273, 689–692 (1999).
[CrossRef]

1995 (1)

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Adv. Electron. Electron. Phys. 64, 63–69 (1995).
[CrossRef]

1986 (1)

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559 (1986).
[CrossRef]

1974 (1)

D. G. Fisher, “The effect of Cs-O activation temperature on the surface escape probability of NEA (In, GaAs) photocathodes,” IEEE Trans. Electron Devices 21, 541–542 (1974).
[CrossRef]

1970 (2)

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

1968 (1)

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

1962 (1)

I. Kudman and T. Seidel, “Absorption edge in degenerate p-type GaAs,” J. Appl. Phys. 33, 771–773 (1962).
[CrossRef]

Antypas, G. A.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Baski, A. A.

M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
[CrossRef]

Cao, X.

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

Chang, B.

J. Niu, Y. Zhang, B. Chang, and Y. Xiong, “Influence of varied doping structure on photoemissive property of photocathode,” Chin. Physica B 20, 044209 (2011).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Niu, Y. Zhang, B. Chang, Z. Yang, and Y. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
[CrossRef]

J. Zou, B. Chang, and Z. Yang, “Evolution of photocurrent during coadsorption of Cs and O on GaAs (100),” Chin. Phys. Lett. 24, 1731–1734 (2007).
[CrossRef]

Chang, B. K.

J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007).
[CrossRef]

J. J. Zou, B. K. Chang, and Z. Yang, “Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes,” Acta Phys. Sin. 56, 2992–2997 (2007).

Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient doping GaAs photocathode and uniform-doping photocathode,” Appl. Opt. 46, 7035–7039 (2007).
[CrossRef] [PubMed]

J. J. Zou, B. K. Chang, and X. Q. Du, “Activation of gradient doping GaAs photocathodes grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 25, 401–404(2005).

Chen, H.

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Chen, H. L.

J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007).
[CrossRef]

Cui, L. J.

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

Dong, H. B.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Dong, X. J.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Du, X. Q.

J. J. Zou, B. K. Chang, and X. Q. Du, “Activation of gradient doping GaAs photocathodes grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 25, 401–404(2005).

Evans, G. B.

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

Ferguson, J. D.

M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
[CrossRef]

Fisher, D. G.

D. G. Fisher, “The effect of Cs-O activation temperature on the surface escape probability of NEA (In, GaAs) photocathodes,” IEEE Trans. Electron Devices 21, 541–542 (1974).
[CrossRef]

Foussekis, M.

M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
[CrossRef]

Fukuma, M.

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559 (1986).
[CrossRef]

Gao, P.

Gislason, H. P.

H. O. Olafsson, J. T. Gudmundsson, H. G. Svavarsson, and H. P. Gislason, “Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy,” Physica B 273, 689–692 (1999).
[CrossRef]

Gudmundsson, J. T.

H. O. Olafsson, J. T. Gudmundsson, H. G. Svavarsson, and H. P. Gislason, “Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy,” Physica B 273, 689–692 (1999).
[CrossRef]

Hiroaki, K.

A. Kenta, S. Takushi, K. Hiroaki, and M. Mizuho, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale,” Physica B 376, 893–896 (2006).
[CrossRef]

James, L. W.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Jijun, Z.

Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
[CrossRef]

Kenta, A.

A. Kenta, S. Takushi, K. Hiroaki, and M. Mizuho, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale,” Physica B 376, 893–896 (2006).
[CrossRef]

Kong, M. Y.

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

Kudman, I.

I. Kudman and T. Seidel, “Absorption edge in degenerate p-type GaAs,” J. Appl. Phys. 33, 771–773 (1962).
[CrossRef]

Li, H.

Li, W.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Liu, L.

J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007).
[CrossRef]

Liu, Y. Z.

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

Lu, S. Q.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Lui, W. W.

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559 (1986).
[CrossRef]

Mizuho, M.

A. Kenta, S. Takushi, K. Hiroaki, and M. Mizuho, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale,” Physica B 376, 893–896 (2006).
[CrossRef]

Moll, J. L.

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

Morko, H.

M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
[CrossRef]

Niu, J.

J. Niu, Y. Zhang, B. Chang, and Y. Xiong, “Influence of varied doping structure on photoemissive property of photocathode,” Chin. Physica B 20, 044209 (2011).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
[CrossRef]

J. Niu, Y. Zhang, B. Chang, Z. Yang, and Y. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef] [PubMed]

Olafsson, H. O.

H. O. Olafsson, J. T. Gudmundsson, H. G. Svavarsson, and H. P. Gislason, “Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy,” Physica B 273, 689–692 (1999).
[CrossRef]

Pan, L.

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

Pollehn, H. K.

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Adv. Electron. Electron. Phys. 64, 63–69 (1995).
[CrossRef]

Qiao, J. L.

Qin, W. G.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Reshchikov, M. A.

M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
[CrossRef]

Seidel, T.

I. Kudman and T. Seidel, “Absorption edge in degenerate p-type GaAs,” J. Appl. Phys. 33, 771–773 (1962).
[CrossRef]

Shi, F.

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Spicer, W. E.

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

Sun, Q. L.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Svavarsson, H. G.

H. O. Olafsson, J. T. Gudmundsson, H. G. Svavarsson, and H. P. Gislason, “Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy,” Physica B 273, 689–692 (1999).
[CrossRef]

Takushi, S.

A. Kenta, S. Takushi, K. Hiroaki, and M. Mizuho, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale,” Physica B 376, 893–896 (2006).
[CrossRef]

Turnbull, A. A.

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

Uebbing, J. J.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Wang, B. Q.

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

Wang, G. C.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Wu, C. W.

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

Xiong, Y.

J. Niu, Y. Zhang, B. Chang, and Y. Xiong, “Influence of varied doping structure on photoemissive property of photocathode,” Chin. Physica B 20, 044209 (2011).
[CrossRef]

J. Niu, Y. Zhang, B. Chang, Z. Yang, and Y. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef] [PubMed]

Yang, Z.

Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
[CrossRef]

J. Niu, Y. Zhang, B. Chang, Z. Yang, and Y. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef] [PubMed]

J. Zou, B. Chang, and Z. Yang, “Evolution of photocurrent during coadsorption of Cs and O on GaAs (100),” Chin. Phys. Lett. 24, 1731–1734 (2007).
[CrossRef]

J. J. Zou, B. K. Chang, and Z. Yang, “Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes,” Acta Phys. Sin. 56, 2992–2997 (2007).

Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient doping GaAs photocathode and uniform-doping photocathode,” Appl. Opt. 46, 7035–7039 (2007).
[CrossRef] [PubMed]

Zeng, Y. P.

Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient doping GaAs photocathode and uniform-doping photocathode,” Appl. Opt. 46, 7035–7039 (2007).
[CrossRef] [PubMed]

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

Zhang, Y.

J. Niu, Y. Zhang, B. Chang, and Y. Xiong, “Influence of varied doping structure on photoemissive property of photocathode,” Chin. Physica B 20, 044209 (2011).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Niu, Y. Zhang, B. Chang, Z. Yang, and Y. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
[CrossRef]

Zhao, J.

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Zhu, Z. P.

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

Zou, J.

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Zou, B. Chang, and Z. Yang, “Evolution of photocurrent during coadsorption of Cs and O on GaAs (100),” Chin. Phys. Lett. 24, 1731–1734 (2007).
[CrossRef]

Zou, J. J.

J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007).
[CrossRef]

J. J. Zou, B. K. Chang, and Z. Yang, “Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes,” Acta Phys. Sin. 56, 2992–2997 (2007).

Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng, and H. Li, “Comparison between gradient doping GaAs photocathode and uniform-doping photocathode,” Appl. Opt. 46, 7035–7039 (2007).
[CrossRef] [PubMed]

J. J. Zou, B. K. Chang, and X. Q. Du, “Activation of gradient doping GaAs photocathodes grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 25, 401–404(2005).

Acta Phys. Sin. (1)

J. J. Zou, B. K. Chang, and Z. Yang, “Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes,” Acta Phys. Sin. 56, 2992–2997 (2007).

Adv. Electron. Electron. Phys. (1)

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Adv. Electron. Electron. Phys. 64, 63–69 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

Chin. Phys. B (1)

Y. Zhang, B. Chang, Z. Yang, J. Niu, and Z. Jijun, “Distribution of carriers in gradient-doping transmission mode GaAs photocathodes grown by molecular beam epitaxy,” Chin. Phys. B 18, 4541–4546 (2009).
[CrossRef]

Chin. Phys. Lett. (1)

J. Zou, B. Chang, and Z. Yang, “Evolution of photocurrent during coadsorption of Cs and O on GaAs (100),” Chin. Phys. Lett. 24, 1731–1734 (2007).
[CrossRef]

Chin. Physica B (1)

J. Niu, Y. Zhang, B. Chang, and Y. Xiong, “Influence of varied doping structure on photoemissive property of photocathode,” Chin. Physica B 20, 044209 (2011).
[CrossRef]

IEEE Trans. Electron Devices (1)

D. G. Fisher, “The effect of Cs-O activation temperature on the surface escape probability of NEA (In, GaAs) photocathodes,” IEEE Trans. Electron Devices 21, 541–542 (1974).
[CrossRef]

J. Appl. Phys. (5)

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III-V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

I. Kudman and T. Seidel, “Absorption edge in degenerate p-type GaAs,” J. Appl. Phys. 33, 771–773 (1962).
[CrossRef]

J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, “Variation of quantum yield curves of GaAs photocathodes under illumination,” J. Appl. Phys. 101, 033126 (2007).
[CrossRef]

W. W. Lui and M. Fukuma, “Exact solution of the Schrodinger equation across an arbitrary one-dimension piecewise-linear potential barrier,” J. Appl. Phys. 60, 1555–1559 (1986).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, F. Shi, and H. Chen, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Cryst. Growth (1)

Y. P. Zeng, X. Cao, L. J. Cui, M. Y. Kong, L. Pan, B. Q. Wang, and Z. P. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth 210, 227–228(2001).
[CrossRef]

J. Phys. D (1)

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D 1, 155–160 (1968).
[CrossRef]

J. Vac. Sci. Technol. (1)

J. J. Zou, B. K. Chang, and X. Q. Du, “Activation of gradient doping GaAs photocathodes grown by molecular beam epitaxy,” J. Vac. Sci. Technol. 25, 401–404(2005).

Physica B (4)

W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong, and Q. L. Sun, “Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system,” Physica B 404, 2197–2201 (2009).
[CrossRef]

H. O. Olafsson, J. T. Gudmundsson, H. G. Svavarsson, and H. P. Gislason, “Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy,” Physica B 273, 689–692 (1999).
[CrossRef]

A. Kenta, S. Takushi, K. Hiroaki, and M. Mizuho, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale,” Physica B 376, 893–896 (2006).
[CrossRef]

M. Foussekis, J. D. Ferguson, A. A. Baski, H. Morko, and M. A. Reshchikov, “Role of the surface in the electrical and optical properties of GaN,” Physica B 404, 4892–4895(2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Built-in electric voltage of exponential doping GaAs photocathodes.

Fig. 2
Fig. 2

Band structure of exponential doping GaAs photocathodes.

Fig. 3
Fig. 3

Diagram of the EDM and UDM.

Fig. 4
Fig. 4

Diagram of the surface photovoltage measurement system.

Fig. 5
Fig. 5

Fitting and experimental curves of the surface photo voltage for the UDM and EDM.

Fig. 6
Fig. 6

Absorption coefficient for GaAs photocathode materials at 300 K .

Fig. 7
Fig. 7

Diagram of the spectral response measurement system.

Fig. 8
Fig. 8

Experimental curves of spectral response for the UDM and EDM.

Fig. 9
Fig. 9

Surface escape probability curves for the UDM and EDM.

Fig. 10
Fig. 10

Surface escape probability curves of photoelectrons for the surface barriers.

Tables (1)

Tables Icon

Table 1 Fitting Parameters of Exponential and Uniform Doping Materials through Surface Photovoltage before Activation

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

N ( x ) = N 0 exp ( A x ) ,
V ( x ) = k 0 T q ln N 0 N ( x ) = k 0 T q ln N 0 N 0 exp ( A x ) = k 0 T A x q , E ( x ) = d V ( x ) d x = k 0 T A q ,
D n d 2 n ( x ) d x 2 μ | E | d n ( x ) d x n ( x ) τ + α I 0 ( 1 R ) exp [ ( α ( T e x ) ] = 0.
D n d n ( x ) d x μ | E | n ( x ) | x = 0 = S V n ( x ) | x = 0 , n ( T e ) = 0 ,
Δ V = K T q ln ( 1 + J w c ) , J w = D n d n ( x ) d x | x = T e , J = P . D n d n ( x ) d x | x = T e ,
D n / μ n = k 0 T / q , L D = D n τ .
Δ V v d = K T I 0 ( 1 R ) α h v L D q c α h v 2 L D 2 α h v L E 1 × { N ( S α h v D n ) M × exp [ ( L E / 2 L D 2 α h v ) T e ] Q M + α h v L D } ,
J v d = P I 0 ( 1 R ) α h v L D α h v 2 L D 2 α h v L E 1 × { N ( S α h v D n ) M × exp [ ( L E / 2 L D 2 α h v ) T e ] Q M + α h v L D } .
L E = μ | E | τ = q | E | k 0 T L D 2 , N = L E 2 + 4 L D 2 , S = S V + μ | E | , M = N D n L D cosh ( N T e 2 L D 2 ) + ( 2 S L D D n L E L D ) sinh ( N T e 2 L D 2 ) , Q = S N cosh ( N T e 2 L D 2 ) + ( S L E + 2 D n ) sinh ( N T e 2 L D 2 ) .
Δ V u d = K T I 0 ( 1 R ) α h v L D q c ( α h v 2 L D 2 1 ) × { ( S V α h v D n ) exp ( α h v T e ) ( D n / L D ) cosh ( T e / L D ) + S V sinh ( T e / L D ) S V cosh ( T e / L D ) + ( D n / L D ) sinh ( T e / L D ) ( D n / L D ) cosh ( T e / L D ) + S V sinh ( T e / L D ) + α h v L D } ,
J u d = P I 0 ( 1 R ) α h v L D α h v 2 L D 2 1 × { ( S V α h v D n ) exp ( α h v T e ) ( D n / L D ) cosh ( T e / L D ) + S V sinh ( T e / L D ) S V cosh ( T e / L D ) + ( D n / L D ) sinh ( T e / L D ) ( D n / L D ) cosh ( T e / L D ) + S V sinh ( T e / L D ) + α h v L D } .

Metrics