Abstract

We fabricate a miniature tapered photonic crystal fiber (PCF) interferometer with enhanced sensitivity by acid microdroplets etching. This method is very simple and cost effective, avoiding elongating the PCF, moving and refixing the device during etching, and measuring. The refractive index sensing properties with different PCF diameters are investigated both theoretically and experimentally. The tapering velocity can be controlled by the microdroplet size and position. The sensitivity greatly increases (five times, 750nm/RIU) and the size decreases after slightly tapering the PCF. The device keeps low temperature dependence before and after tapering. More uniformly and thinly tapered PCFs can be realized with higher sensitivity (100 times) by optimizing the etching process.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006).
    [CrossRef]
  2. O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
    [CrossRef]
  3. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
    [CrossRef]
  4. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
    [CrossRef]
  5. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17, 1447–1453 (2009).
    [CrossRef] [PubMed]
  6. S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
    [CrossRef]
  7. S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
    [CrossRef]
  8. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009).
    [CrossRef] [PubMed]
  9. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15, 1491–1496 (2007).
    [CrossRef] [PubMed]
  10. V. P. Minkovich, J. Villatoro, D. Monzon-Hernandez, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609–7614 (2005).
    [CrossRef] [PubMed]
  11. E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Opt. Express 18, 22593–22598(2010).
    [CrossRef] [PubMed]
  12. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
    [CrossRef]
  13. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42, 517–519 (2006).
    [CrossRef]
  14. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
    [CrossRef]
  15. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764–5769 (2008).
    [CrossRef] [PubMed]

2010 (4)

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
[CrossRef]

E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Opt. Express 18, 22593–22598(2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

2007 (3)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15, 1491–1496 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42, 517–519 (2006).
[CrossRef]

2005 (1)

Araujo, F. M.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Badenes, G.

Brambilla, G.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
[CrossRef]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42, 517–519 (2006).
[CrossRef]

Calixto, S.

Demokan, M. S.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006).
[CrossRef]

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Feng, X.

Ferreira, L. A.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Finazzi, V.

J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17, 1447–1453 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Frazao, O.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Han, Y. K.

Horak, P.

Hu, W.

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

Huang, Z. D.

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

Jha, R.

Jin, W.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006).
[CrossRef]

Ju, J.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006).
[CrossRef]

Jung, Y.

Koizumi, F.

Koukharenko, E.

Kreuzer, M. P.

Li, S. S.

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

Li, Y. J.

Lin, X. W.

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

Lu, Y. Q.

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

Minkovich, V. P.

Monzon-Hernandez, D.

Murugan, G. S.

Poon, J. K. S.

Pruneri, V.

Qian, X. S.

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

Richardson, D. J.

Sacher, W. D.

Santos, J. L.

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Sessions, N. P.

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Song, X. S.

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

Sotskaya, L. I.

Sotsky, A. B.

Tam, H. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Tsai, H. L.

Villatoro, J.

Wang, Z.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006).
[CrossRef]

Wei, T.

Wilkinson, J. S.

Xiao, H.

Xu, F.

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42, 517–519 (2006).
[CrossRef]

Zhang, E. J.

Zhang, S. Y.

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

Zhong, Q.

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Electron. Lett. (2)

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42, 517–519 (2006).
[CrossRef]

S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010).
[CrossRef]

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
[CrossRef]

Laser Photon. Rev. (1)

O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron microscope image of the cross section of the PCF used for the experiment. (b) Schematic of the experimental setup for tapering and sensing measurement. The PCF length is L and the diameter of the tapered PCF is D. OSA, optical spectrum analyzer. (c) Pictures of the PCF before etching and after 29 min of etching.

Fig. 2
Fig. 2

Enhanced ratios for several cladding modes as a function of the diameter of a tapered PCF.

Fig. 3
Fig. 3

(a) Interference spectra of the tapered PCF interferometers in air. (b) Wavelength shifts due to surrounding refractive index changes before and after the interferometer was etched by a small HF microdroplet. Here, the etching time t is the total time accumulated by all these tapering periods before the spectra were measured.

Fig. 4
Fig. 4

Wavelength shifts due to temperature change before and after the interferometer was etched by HF microdroplets.

Tables (1)

Tables Icon

Table 1 Sensitivity at Different Etching Times

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I co + I cl + 2 I co I cl cos ( δ + φ 0 ) ,
Free spectral range ( FSR ) = 2 π λ / δ ,
S = d λ i d n a = λ i n cl n co ( n cl n co ) n a .

Metrics