Abstract

A new type of optical filter based on mechanical tuning and a microring resonator is proposed. The proposed filter is expected to consume much less standing power compared to the conventional thermo-optic and carrier-injection tunable filters. In this work, two methods are used to prove the concept of the proposed device: (1) the analytical method and (2) the finite-difference time-domain method. The dependence of the filter characteristics on some of the device parameters is studied as well.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
    [CrossRef]
  2. G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber. Technol. 5, 3–39 (1999).
    [CrossRef]
  3. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
    [CrossRef]
  4. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
    [CrossRef]
  5. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
    [CrossRef]
  6. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
    [CrossRef]
  7. K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
    [CrossRef]
  8. M. C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
    [CrossRef]
  9. M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
    [CrossRef] [PubMed]
  10. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
    [CrossRef]
  11. R. Chatterjee and C. W. Wong, “Nanomechanical proximity perturbation for switching in silicon-based directional couplers for high-density photonic integrated circuits,” J. Microelectromech. Syst. 19, 657–662 (2010).
    [CrossRef]
  12. F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” IEEE J. Sel. Top. Quantum Electron. 5, 52–59(1999).
    [CrossRef]
  13. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
    [CrossRef]
  14. E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. 20, 1311–1319(1984).
    [CrossRef]
  15. H. Ribot, P. Sansonetti, and A. Carenco, “Improved design for the monolithic integration of a laser and an optical waveguide coupled by an evanescent field,” IEEE J. Quantum Electron. 26, 1930–1941 (1990).
    [CrossRef]
  16. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [CrossRef]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech, 2000).
  18. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]

2010 (2)

R. Chatterjee and C. W. Wong, “Nanomechanical proximity perturbation for switching in silicon-based directional couplers for high-density photonic integrated circuits,” J. Microelectromech. Syst. 19, 657–662 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2008 (1)

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[CrossRef]

2007 (2)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
[CrossRef]

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

2006 (2)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
[CrossRef] [PubMed]

2005 (3)

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

M. C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[CrossRef]

2002 (1)

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

2000 (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech, 2000).

1999 (2)

F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” IEEE J. Sel. Top. Quantum Electron. 5, 52–59(1999).
[CrossRef]

G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber. Technol. 5, 3–39 (1999).
[CrossRef]

1997 (1)

M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
[CrossRef]

1990 (1)

H. Ribot, P. Sansonetti, and A. Carenco, “Improved design for the monolithic integration of a laser and an optical waveguide coupled by an evanescent field,” IEEE J. Quantum Electron. 26, 1930–1941 (1990).
[CrossRef]

1984 (1)

E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. 20, 1311–1319(1984).
[CrossRef]

Amarnath, K.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Amatya, R.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[CrossRef]

Avrahami, Y.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Banerjee, D.

M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
[CrossRef]

Barbastathis, G.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Barwicz, T.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Borella, M. S.

M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
[CrossRef]

Carenco, A.

H. Ribot, P. Sansonetti, and A. Carenco, “Improved design for the monolithic integration of a laser and an optical waveguide coupled by an evanescent field,” IEEE J. Quantum Electron. 26, 1930–1941 (1990).
[CrossRef]

Chatterjee, R.

R. Chatterjee and C. W. Wong, “Nanomechanical proximity perturbation for switching in silicon-based directional couplers for high-density photonic integrated circuits,” J. Microelectromech. Syst. 19, 657–662 (2010).
[CrossRef]

Choi, S. J.

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

Chollet, F.

F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” IEEE J. Sel. Top. Quantum Electron. 5, 52–59(1999).
[CrossRef]

Dahlem, M. S.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Dapkus, P. D.

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

Datta, M.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

de Labachelerie, M.

F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” IEEE J. Sel. Top. Quantum Electron. 5, 52–59(1999).
[CrossRef]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
[CrossRef]

Djordjev, K.

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

Fujita, H.

F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” IEEE J. Sel. Top. Quantum Electron. 5, 52–59(1999).
[CrossRef]

Gan, F.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Ghodssi, R.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
[CrossRef]

Gunter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech, 2000).

Haus, H. A.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Ho, P. T.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Holzwarth, C. W.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[CrossRef]

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ippen, E. P.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jue, J. P.

M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
[CrossRef]

Kanakaraju, S.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Kartner, F. X.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Keiser, G. E.

G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber. Technol. 5, 3–39 (1999).
[CrossRef]

Kelly, D. P.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Lee, M. C. M.

M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
[CrossRef] [PubMed]

M. C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[CrossRef]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Lopez-Royo, F.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Marom, E.

E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. 20, 1311–1319(1984).
[CrossRef]

Mukherjee, B.

M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
[CrossRef]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Nielson, G. N.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
[CrossRef]

Popovic, M. A.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Pruessner, M. W.

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Rakich, P. T.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Ram, R. J.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[CrossRef]

Ramamurthy, B.

M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
[CrossRef]

Ramer, O. G.

E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. 20, 1311–1319(1984).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
[CrossRef]

Ribot, H.

H. Ribot, P. Sansonetti, and A. Carenco, “Improved design for the monolithic integration of a laser and an optical waveguide coupled by an evanescent field,” IEEE J. Quantum Electron. 26, 1930–1941 (1990).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ruschin, S.

E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. 20, 1311–1319(1984).
[CrossRef]

Sansonetti, P.

H. Ribot, P. Sansonetti, and A. Carenco, “Improved design for the monolithic integration of a laser and an optical waveguide coupled by an evanescent field,” IEEE J. Quantum Electron. 26, 1930–1941 (1990).
[CrossRef]

Seneviratne, D.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Smith, H. I.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[CrossRef]

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech, 2000).

Tuller, H. L.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Watts, M. R.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

Wong, C. W.

R. Chatterjee and C. W. Wong, “Nanomechanical proximity perturbation for switching in silicon-based directional couplers for high-density photonic integrated circuits,” J. Microelectromech. Syst. 19, 657–662 (2010).
[CrossRef]

Wu, M. C.

M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
[CrossRef] [PubMed]

M. C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. 20, 1311–1319(1984).
[CrossRef]

H. Ribot, P. Sansonetti, and A. Carenco, “Improved design for the monolithic integration of a laser and an optical waveguide coupled by an evanescent field,” IEEE J. Quantum Electron. 26, 1930–1941 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” IEEE J. Sel. Top. Quantum Electron. 5, 52–59(1999).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[CrossRef]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[CrossRef]

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002).
[CrossRef]

M. C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[CrossRef]

J. Microelectromech. Syst. (2)

R. Chatterjee and C. W. Wong, “Nanomechanical proximity perturbation for switching in silicon-based directional couplers for high-density photonic integrated circuits,” J. Microelectromech. Syst. 19, 657–662 (2010).
[CrossRef]

M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005).
[CrossRef]

Nat. Photon. (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007).
[CrossRef]

Opt. Express (1)

Opt. Fiber. Technol. (1)

G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber. Technol. 5, 3–39 (1999).
[CrossRef]

Proc. IEEE (1)

M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997).
[CrossRef]

Other (2)

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68.
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of one embodiment of the proposed tunable optical filter with two bus waveguides and an index modulator that is actuated in the out-of-plane direction.

Fig. 2
Fig. 2

Side view of the microring resonator (cut and straightened) and the index modulator (straightened). R is the radius of the resonator.

Fig. 3
Fig. 3

Calculated (a) loss and (b) phase shift per one revolution around the resonator when n mod , t mod , R, and λ are 2.2, 200 nm , 10 μm , and 1550 nm , respectively. The length of the section II, L II is 2 π R / 3 . The calculated phase shift is the amount of the phase difference compared to the case of no index modulation.

Fig. 4
Fig. 4

Schematic diagram of the tunable notch filter (top view). a IN , b OUT , a 1 , and b 1 are fields at the coupling region, which have the relationship expressed in Eq. (5).

Fig. 5
Fig. 5

(a) Output power P OUT versus the wavelength for the various gaps g, normalized to the input power. (b) Resonant wavelength λ res versus g. (c)  P OUT at λ res versus g, normalized to the input power. For the calculation, n mod , t mod , α res , t, R, and L II values of 2.2, 200 nm , 0.98, 0.98, 10 μm , and 2 π R / 3 are used, respectively.

Fig. 6
Fig. 6

Schematic diagram of the tunable drop filter.

Fig. 7
Fig. 7

(a) Output power at the DROP port, P DROP , for the various gaps g, normalized to the input power. (b)  P DROP at the resonant wavelength λ res versus g. λ res is varied by g. For the calculation, n mod , t mod , α res , t, R, and L II values of 2.2, 200 nm , 0.98, 0.98, 10 μm , and 2 π R / 3 are used, respectively.

Fig. 8
Fig. 8

(a) Gap g required to cover one full FSR and (b) maximum variation in the dropped power P DROP for the entire range of one FSR, both as a function of the index of the modulator, n mod . For the calculation, t mod , α res , t, R, and L II values of 200 nm , 0.98, 0.98, 10 μm , and 2 π R / 3 are used, respectively.

Fig. 9
Fig. 9

Resonant wavelength λ res versus the length of the modulator, L II . L II is normalized to 2 π R . The combined length ( L I + L II + L III ) is fixed to be 2 π R . For the calculation, n mod , t mod , α res , t, R, and g values of 2.2, 200 nm , 0.98, 0.98, 10 μm , and 20 nm are used, respectively.

Fig. 10
Fig. 10

Left: schematic diagram (top view) of the racetrack drop filter with an inplane (comb-drive) actuator. Right: a part of the filter is redrawn to define some of the geometrical parameters.

Fig. 11
Fig. 11

Snapshots from the FDTD simulation of the racetrack drop filter: (a) when the gap g is 300 nm (with the source at the resonant wavelength of 1566.95 nm ) and (b) when g is 20 nm (with the source at the resonant wavelength of 1565.72 nm ). The enlarged views of the modulator section are presented, as well.

Fig. 12
Fig. 12

FDTD simulation results on the racetrack drop filter. (a) Output power at the DROP port, P DROP for various gaps g, normalized to the input power. (b) Resonant wavelength versus g. For the calculation, n mod , t mod , R T , and L T values of 2.2, 200 nm , 3.33 μm , and 20.94 μm are used, respectively. R T and L T are defined in Fig. 10. The gap between the waveguides and the resonator is 170 nm . The widths of the waveguides and the resonator are 200 nm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E I , end ( x ) = E I ( x ) exp ( j k 0 n I L I ) ,
C II , i = E I , end ( x ) E II , i * ( x ) d x [ | E I , end ( x ) | 2 d x ] 0.5 [ | E II , i ( x ) | 2 d x ] 0.5 .
E II , end ( x ) = i C II , i E II , i ( x ) exp ( j k 0 n II , i L II ) ,
ϕ round = arg [ C III exp ( j k 0 n III L III ) ] ,
[ b 1 b OUT ] = [ t * κ * κ t ] [ a 1 a IN ] ,
P OUT = | α res α coup exp ( j ϕ round ) t α res α coup t * exp ( j ϕ round ) 1 | 2 ,
P DROP = | α res 0.75 α coup | κ | 2 exp ( j ϕ 3 / 4 ) α res α coup ( t * ) 2 exp ( j ϕ round ) 1 | 2 ,
2 ( π R T + L T ) = 2 π R ,

Metrics