Abstract

Fabrication of an all-optical switchable holographic liquid crystal (LC) Fresnel lens based on azo-dye-doped polymer-dispersed LCs is reported using a Michelson interferometer. It is found that, upon circularly polarized photoirradiation, the diffraction efficiency of the fabricated Fresnel lens was increased significantly in a reversible manner. We believe this is due to the anisotropy induced by reorientation of the LC molecules coupled with azo-dye molecule orientation due to trans–cis–trans photoisomerization, which modulates the refractive index of the LC-rich regions. We also studied the effect of azo dye on the polarization dependency of the fabricated lens.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
    [CrossRef]
  2. X. Ren, S. Liu, X. Zhang, and S. Li, “Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens,” Phys. Lett. A 354, 243–247 (2006).
    [CrossRef]
  3. S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
    [CrossRef]
  4. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480–484 (2000).
    [CrossRef]
  5. R. Cudney, L. Ríos, and H. Escamilla, “Electrically controlled Fresnel zone plates made from ring-shaped 180° domains,” Opt. Express 12, 5783–5788 (2004).
    [CrossRef] [PubMed]
  6. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,” Opt. Lett. 16, 532–534 (1991).
    [CrossRef] [PubMed]
  7. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
    [CrossRef] [PubMed]
  8. Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13, 4141–4147 (2005).
    [CrossRef] [PubMed]
  9. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
    [CrossRef]
  10. Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. OptoElectron. 2008, 684349 (2008).
    [CrossRef]
  11. Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
    [CrossRef]
  12. H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
    [CrossRef]
  13. H. Jashnsaz, E. Mohajerani, H. Nemati, S. H. Razavi, and I. A. Alidokht, “Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer,” Appl. Opt. 50, 2701–2707 (2011).
    [CrossRef] [PubMed]
  14. L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
    [CrossRef]
  15. L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
    [CrossRef] [PubMed]
  16. A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
    [CrossRef]
  17. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34, 2351–2353 (2009).
    [CrossRef] [PubMed]
  18. I. Jánossy and L. Szabados, “Optical reorientation of nematic liquid crystals in the presence of photoisomerization,” Phys. Rev. E 58, 4598–4604 (1998).
    [CrossRef]
  19. C. Y. Huang, Y. R. Lin, K. Y. Lo, and C. R. Lee, “Dynamics of photoalignment in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 93, 181114 (2008).
    [CrossRef]
  20. T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic gratings formed by photoinduced molecular reorientation in dye-doped polymer-dissolved liquid crystal composites,” Jpn. J. Appl. Phys. 47, 441–445 (2008).
    [CrossRef]
  21. A. Y.-G. Fuh, H.-C. Lin, T.-S. Mo, and C.-H. Chen, “Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique,” Opt. Express 13, 10634(2005).
    [CrossRef] [PubMed]
  22. L. Brzozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. Mater. Electron. 12, 483–489 (2001).
    [CrossRef]
  23. S. G. Gloutier, D. A. Peyrot, T. V. Galstain, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4, S228–S234 (2002).
    [CrossRef]
  24. J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007).
    [CrossRef]
  25. M. B. Rad, H. Nemati, E. Mohajerani, and N. H. Nataj, “Effect of surface rubbing on polarization behavior and electro-optical properties of holographic polymer-dispersed liquid crystals (HPDLCs),” J. Optoelectron. Adv. Mater. 12, 1556–1561(2010).
  26. X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

2011 (1)

2010 (2)

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

M. B. Rad, H. Nemati, E. Mohajerani, and N. H. Nataj, “Effect of surface rubbing on polarization behavior and electro-optical properties of holographic polymer-dispersed liquid crystals (HPDLCs),” J. Optoelectron. Adv. Mater. 12, 1556–1561(2010).

2009 (2)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34, 2351–2353 (2009).
[CrossRef] [PubMed]

2008 (4)

L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. OptoElectron. 2008, 684349 (2008).
[CrossRef]

C. Y. Huang, Y. R. Lin, K. Y. Lo, and C. R. Lee, “Dynamics of photoalignment in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 93, 181114 (2008).
[CrossRef]

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic gratings formed by photoinduced molecular reorientation in dye-doped polymer-dissolved liquid crystal composites,” Jpn. J. Appl. Phys. 47, 441–445 (2008).
[CrossRef]

2007 (1)

J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007).
[CrossRef]

2006 (1)

X. Ren, S. Liu, X. Zhang, and S. Li, “Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens,” Phys. Lett. A 354, 243–247 (2006).
[CrossRef]

2005 (3)

2004 (2)

R. Cudney, L. Ríos, and H. Escamilla, “Electrically controlled Fresnel zone plates made from ring-shaped 180° domains,” Opt. Express 12, 5783–5788 (2004).
[CrossRef] [PubMed]

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

2003 (2)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef] [PubMed]

2002 (1)

S. G. Gloutier, D. A. Peyrot, T. V. Galstain, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4, S228–S234 (2002).
[CrossRef]

2001 (1)

L. Brzozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. Mater. Electron. 12, 483–489 (2001).
[CrossRef]

2000 (2)

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480–484 (2000).
[CrossRef]

1999 (1)

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

1998 (1)

I. Jánossy and L. Szabados, “Optical reorientation of nematic liquid crystals in the presence of photoisomerization,” Phys. Rev. E 58, 4598–4604 (1998).
[CrossRef]

1996 (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

1991 (1)

Alidokht, I. A.

Brzozowski, L.

L. Brzozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. Mater. Electron. 12, 483–489 (2001).
[CrossRef]

Chen, C.-H.

Cho, Y. H.

J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007).
[CrossRef]

Cudney, R.

Dai, H. T.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Date, M.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480–484 (2000).
[CrossRef]

Escamilla, H.

Fan, Y. H.

Ferjani, S.

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

Ferstl, M.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Frisch, A.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Fuh, A. Y. G.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Fuh, A. Y.-G.

Galstain, T. V.

S. G. Gloutier, D. A. Peyrot, T. V. Galstain, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4, S228–S234 (2002).
[CrossRef]

Gloutier, S. G.

S. G. Gloutier, D. A. Peyrot, T. V. Galstain, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4, S228–S234 (2002).
[CrossRef]

Huang, C. Y.

C. Y. Huang, Y. R. Lin, K. Y. Lo, and C. R. Lee, “Dynamics of photoalignment in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 93, 181114 (2008).
[CrossRef]

Huang, H.

Huang, L. J.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Huang, T. J.

Jánossy, I.

I. Jánossy and L. Szabados, “Optical reorientation of nematic liquid crystals in the presence of photoisomerization,” Phys. Rev. E 58, 4598–4604 (1998).
[CrossRef]

Jashnsaz, H.

Kawatsuki, N.

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic gratings formed by photoinduced molecular reorientation in dye-doped polymer-dissolved liquid crystal composites,” Jpn. J. Appl. Phys. 47, 441–445 (2008).
[CrossRef]

Kim, B. K.

J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007).
[CrossRef]

Kim, E. H.

J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007).
[CrossRef]

Kim, E. S.

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

Kim, S. C.

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

Lee, C. R.

C. Y. Huang, Y. R. Lin, K. Y. Lo, and C. R. Lee, “Dynamics of photoalignment in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 93, 181114 (2008).
[CrossRef]

Lee, S. E.

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

Lessard, R. A.

S. G. Gloutier, D. A. Peyrot, T. V. Galstain, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4, S228–S234 (2002).
[CrossRef]

Li, S.

X. Ren, S. Liu, X. Zhang, and S. Li, “Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens,” Phys. Lett. A 354, 243–247 (2006).
[CrossRef]

Li, X.

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Li, Z.

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Lin, H.-C.

Lin, Y. R.

C. Y. Huang, Y. R. Lin, K. Y. Lo, and C. R. Lee, “Dynamics of photoalignment in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 93, 181114 (2008).
[CrossRef]

Liu, J. H.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Liu, S.

X. Ren, S. Liu, X. Zhang, and S. Li, “Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens,” Phys. Lett. A 354, 243–247 (2006).
[CrossRef]

Liu, T. C.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Liu, Y. J.

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34, 2351–2353 (2009).
[CrossRef] [PubMed]

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. OptoElectron. 2008, 684349 (2008).
[CrossRef]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Lo, K. Y.

C. Y. Huang, Y. R. Lin, K. Y. Lo, and C. R. Lee, “Dynamics of photoalignment in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 93, 181114 (2008).
[CrossRef]

Mo, T.-S.

Mohajerani, E.

H. Jashnsaz, E. Mohajerani, H. Nemati, S. H. Razavi, and I. A. Alidokht, “Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer,” Appl. Opt. 50, 2701–2707 (2011).
[CrossRef] [PubMed]

M. B. Rad, H. Nemati, E. Mohajerani, and N. H. Nataj, “Effect of surface rubbing on polarization behavior and electro-optical properties of holographic polymer-dispersed liquid crystals (HPDLCs),” J. Optoelectron. Adv. Mater. 12, 1556–1561(2010).

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Moheghi, A.

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Nataj, N. H.

M. B. Rad, H. Nemati, E. Mohajerani, and N. H. Nataj, “Effect of surface rubbing on polarization behavior and electro-optical properties of holographic polymer-dispersed liquid crystals (HPDLCs),” J. Optoelectron. Adv. Mater. 12, 1556–1561(2010).

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Nemati, H.

H. Jashnsaz, E. Mohajerani, H. Nemati, S. H. Razavi, and I. A. Alidokht, “Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer,” Appl. Opt. 50, 2701–2707 (2011).
[CrossRef] [PubMed]

M. B. Rad, H. Nemati, E. Mohajerani, and N. H. Nataj, “Effect of surface rubbing on polarization behavior and electro-optical properties of holographic polymer-dispersed liquid crystals (HPDLCs),” J. Optoelectron. Adv. Mater. 12, 1556–1561(2010).

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Ono, H.

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic gratings formed by photoinduced molecular reorientation in dye-doped polymer-dissolved liquid crystal composites,” Jpn. J. Appl. Phys. 47, 441–445 (2008).
[CrossRef]

Patel, J. S.

Peyrot, D. A.

S. G. Gloutier, D. A. Peyrot, T. V. Galstain, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4, S228–S234 (2002).
[CrossRef]

Rad, M. B.

M. B. Rad, H. Nemati, E. Mohajerani, and N. H. Nataj, “Effect of surface rubbing on polarization behavior and electro-optical properties of holographic polymer-dispersed liquid crystals (HPDLCs),” J. Optoelectron. Adv. Mater. 12, 1556–1561(2010).

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

Rastani, K.

Razavi, S. H.

Ren, H.

Ren, X.

X. Ren, S. Liu, X. Zhang, and S. Li, “Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens,” Phys. Lett. A 354, 243–247 (2006).
[CrossRef]

Rina, W.

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Ríos, L.

Sargent, E. H.

L. Brzozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. Mater. Electron. 12, 483–489 (2001).
[CrossRef]

Sasaki, T.

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic gratings formed by photoinduced molecular reorientation in dye-doped polymer-dissolved liquid crystal composites,” Jpn. J. Appl. Phys. 47, 441–445 (2008).
[CrossRef]

Serak, S.

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Shengping, R.

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Shi, J.

Sio, L. D.

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Sun, X. W.

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. OptoElectron. 2008, 684349 (2008).
[CrossRef]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Suyama, S.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480–484 (2000).
[CrossRef]

Szabados, L.

I. Jánossy and L. Szabados, “Optical reorientation of nematic liquid crystals in the presence of photoisomerization,” Phys. Rev. E 58, 4598–4604 (1998).
[CrossRef]

Tabiryan, N.

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Takada, H.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480–484 (2000).
[CrossRef]

Tao, Y.

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Tsai, M. S.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

Uchida, T.

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Umeton, C.

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Veltri, A.

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Walker, T. R.

Woo, J. Y.

J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007).
[CrossRef]

Wu, S. T.

Xu, K. S.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Zenghui, P.

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Zhang, X.

X. Ren, S. Liu, X. Zhang, and S. Li, “Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens,” Phys. Lett. A 354, 243–247 (2006).
[CrossRef]

Zheng, Y. B.

Adv. Mater. (1)

L. D. Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010).
[CrossRef] [PubMed]

Adv. OptoElectron. (1)

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. OptoElectron. 2008, 684349 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74, 2572–2574 (1999).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

C. Y. Huang, Y. R. Lin, K. Y. Lo, and C. R. Lee, “Dynamics of photoalignment in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 93, 181114 (2008).
[CrossRef]

L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Europhys. Lett. (1)

H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

L. Brzozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. Mater. Electron. 12, 483–489 (2001).
[CrossRef]

J. Mod. Opt. (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

J. Opt. A (1)

S. G. Gloutier, D. A. Peyrot, T. V. Galstain, and R. A. Lessard, “Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography,” J. Opt. A 4, S228–S234 (2002).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

M. B. Rad, H. Nemati, E. Mohajerani, and N. H. Nataj, “Effect of surface rubbing on polarization behavior and electro-optical properties of holographic polymer-dispersed liquid crystals (HPDLCs),” J. Optoelectron. Adv. Mater. 12, 1556–1561(2010).

Jpn. J. Appl. Phys. (2)

T. Sasaki, H. Ono, and N. Kawatsuki, “Anisotropic gratings formed by photoinduced molecular reorientation in dye-doped polymer-dissolved liquid crystal composites,” Jpn. J. Appl. Phys. 47, 441–445 (2008).
[CrossRef]

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39, 480–484 (2000).
[CrossRef]

Liq. Cryst. (1)

J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Lett. A (1)

X. Ren, S. Liu, X. Zhang, and S. Li, “Multiplexer/demultiplexer in optical communications based on a holographic Fresnel lens,” Phys. Lett. A 354, 243–247 (2006).
[CrossRef]

Phys. Rev. E (1)

I. Jánossy and L. Szabados, “Optical reorientation of nematic liquid crystals in the presence of photoisomerization,” Phys. Rev. E 58, 4598–4604 (1998).
[CrossRef]

Proc. SPIE (1)

S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004).
[CrossRef]

Science in China E (1)

X. Li, W. Rina, P. Zenghui, Y. Tao, Z. Li, R. Shengping, andT. Uchida, “Order parameters of liquid crystal on the rubbing surfaces of alignment layers,” Science in China E 45, 654–660 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Michelson interferometer; experimental arrangement for fabricating the holographic Fresnel lens. BE, beam expander; BS, beam splitter; L 1 , L 2 , and L 3 , lenses; M 1 and M 2 , mirrors; P, polarizer.

Fig. 2
Fig. 2

Experimental arrangement for studying optically switching properties of the fabricated lens. L 1 and L 2 , lenses; P 1 , P 2 , and P 3 , polarizers; PD, photodiode detector; CF, color filter; QWP, quarter-wave plate. The rubbing direction of HG cell is in the x direction and makes an angle of about 30 ° with wave vector of the pump beam, K.

Fig. 3
Fig. 3

(a) Optical polarizing microscope image of the patterned sample with parallel polarizers, direction of polarizer, analyzer, and HG cell rubbing determined on it, and observed laser beam images using a CCD camera at focal point (b) without LC sample, (c) with sample.

Fig. 4
Fig. 4

Microscope images of the azo-dye-doped H-PDLC Fresnel lens with (a), (c) parallel polarizers and (b), (d) crossed polarizers. P, A, and R indicate direction of polarizer, analyzer, and rubbing direction of HG cell, respectively.

Fig. 5
Fig. 5

Transmission spectrum under different pumping intensities for (a) an azo-dye-doped H-PDLC Fresnel lens and (b) an undoped one.

Fig. 6
Fig. 6

Focusing efficiency as a function of the irradiating intensities.

Fig. 7
Fig. 7

Photoresponse of the azo-dye-doped H-PDLC Fresnel lens at three different pumping intensities.

Fig. 8
Fig. 8

Fitted photoresponse of the azo-dye-doped H-PDLC Fresnel lens at pumping intensity of P = 38 mW for (a) switching pump beam on (b) switching pump beam off.

Fig. 9
Fig. 9

DE as a function of irradiation time at 632.8 nm for H-PDLC film prepared with and without azo dye (MR).

Fig. 10
Fig. 10

Focusing efficiency as a function of the polarization angle of the probe beam with respect to the surface rubbing of HG cell in two H-PDLC Fresnel lenses prepared with and without azo dye (MR).

Metrics