Abstract

The quasi-light-storage (QLS) is a method for the variable and almost distortion free storage of optical data which is based on stimulated Brillouin scattering (SBS). The natural gain bandwidth of SBS limits the storage time of this method to up to 100ns. We overcome this limit by the superposition of the SBS gain bandwidth with two losses. With this narrowed gain bandwidth, we were able to enhance the storage time for the QLS by 40%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switch. Netw. 5, 10–18 (2008).
    [CrossRef]
  2. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  3. M. G. Herráez, K. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
    [CrossRef]
  4. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [CrossRef] [PubMed]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  6. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
    [CrossRef] [PubMed]
  7. T. F. Krauss, “Why do we need slow light?” Nat. Phot. 2, 448–450 (2008).
    [CrossRef]
  8. S. Preussler, K. Jamshidi, A. Wiatrek, R. Henker, C. Bunge, and T. Schneider, “Quasi-Light-Storage based on time-frequency coherence,” Opt. Express 17, 15790–15798 (2009).
    [CrossRef] [PubMed]
  9. T. Schneider, K. Jamshidi, and S. Preussler, “Quasi-Light Storage∶ a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28, 2586–2592 (2010).
    [CrossRef]
  10. K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 17(1), (2001)..
    [CrossRef]
  11. R. Boyd, Nonlinear Optics (Academic, 2003).
  12. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
    [CrossRef]
  13. T. Schneider, R. Henker, K. Lauterbach, and M. Junker, “Distortion reduction in slow light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285(2008).
    [CrossRef] [PubMed]
  14. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain band-width reduction down to 3.4 MHz,” Opt. Express 19, 8565–8570 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (3)

T. Schneider, R. Henker, K. Lauterbach, and M. Junker, “Distortion reduction in slow light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285(2008).
[CrossRef] [PubMed]

T. F. Krauss, “Why do we need slow light?” Nat. Phot. 2, 448–450 (2008).
[CrossRef]

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switch. Netw. 5, 10–18 (2008).
[CrossRef]

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

2003 (1)

R. Boyd, Nonlinear Optics (Academic, 2003).

2002 (1)

2001 (1)

K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 17(1), (2001)..
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Blumenthal, D. J.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switch. Netw. 5, 10–18 (2008).
[CrossRef]

Bowers, J. E.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switch. Netw. 5, 10–18 (2008).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear Optics (Academic, 2003).

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Bunge, C.

Burmeister, E. F.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switch. Netw. 5, 10–18 (2008).
[CrossRef]

Delavaux, J.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Henker, R.

Herráez, M. G.

Jamshidi, K.

Junker, M.

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Phot. 2, 448–450 (2008).
[CrossRef]

Lauterbach, K.

Okawachi, Y.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Preussler, S.

Schneider, T.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef] [PubMed]

Song, K.

Thévenaz, L.

Toulouse, J.

Wiatrek, A.

Yeniay, A.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Jamshidi, S. Preussler, A. Wiatrek, and T. Schneider, “A review to the all-optical quasi-light storage,” IEEE J. Sel. Top. Quantum Electron. 17(1), (2001)..
[CrossRef]

J. Lightwave Technol. (2)

Nat. Phot. (1)

T. F. Krauss, “Why do we need slow light?” Nat. Phot. 2, 448–450 (2008).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Express (5)

Opt. Switch. Netw. (1)

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switch. Netw. 5, 10–18 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tuneable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Other (1)

R. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Reduced single Brillouin gain (dashed) in comparison to the superposed gain (solid). The parameters are d = 1 and m = 0.5 on the left side and d = 0.6 and m = 0.6 on the right side.

Fig. 2
Fig. 2

Experimental setup. Osci: oscilloscope.

Fig. 3
Fig. 3

Natural Brillouin gain (dashed) in comparison to the measured reduced gain (solid) with a bandwidth of 7 MHz .

Fig. 4
Fig. 4

Measurement results: (a) reference pattern, (b)  140 ns stored data pattern, and (c) train of copies.

Fig. 5
Fig. 5

(a) Delayed and extracted data packets after the QLS system and the reference pattern (thick black line) and (b) the relative pulse width versus the storage time.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G N ges = g 0 ( 1 Ω 2 + 1 m ( Ω + d ) 2 + 1 m ( Ω d ) 2 + 1 ) ,

Metrics