Abstract

A stable single-frequency Q-switched Tm:YAG laser was demonstrated. The laser was injection seeded by a monolithic nonplanar ring oscillator laser utilizing the ramp–hold–fire technique. The measurements of the output parameters were presented. This paper focused on investigation of the frequency stability of the injection-seeded laser, which was measured by optical heterodyne technique. A method used to restrict the frequency jitter of the laser was discussed. The fluctuation of the laser frequency was reduced from 2.36MHz (rms) to 1.07MHz (rms) in 1h by optimizing the voltage of the piezoelectric translator.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, and M. J. Kavaya, “1 J/pulseQ-switched 2 μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
    [CrossRef] [PubMed]
  2. G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
    [CrossRef]
  3. S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
    [CrossRef]
  4. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR,” Laser Phys. Lett. 1, 285–290 (2004).
    [CrossRef]
  5. Y. K. Park, G. Giuliani, and R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
    [CrossRef]
  6. H. Fukuoka, M. Kadoya, and K. Asaba, “Injection-seeded Tm:Ho:YLF laser,” Proc. SPIE 4153, 455–462 (2001).
    [CrossRef]
  7. C. Q. Gao, Z. F. Lin, M. W. Gao, Y. S. Zhang, L. N. Zhu, R. Wang, and Y. Zheng, “Single-frequency operation of diode-pumped 2 μmQ-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser,” Appl. Opt. 49, 2841–2844 (2010).
    [CrossRef] [PubMed]
  8. Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
    [CrossRef]
  9. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp–hold–fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050(2001).
    [CrossRef]
  10. X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
    [CrossRef]
  11. K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
    [CrossRef]
  12. G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
    [CrossRef]
  13. S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
    [CrossRef]
  14. C. Q. Gao, M. W. Gao, Y. S. Zhang, Z. F. Lin, and L. N. Zhu, “Stable single-frequency output at 2.01 m from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
[CrossRef]

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

C. Q. Gao, M. W. Gao, Y. S. Zhang, Z. F. Lin, and L. N. Zhu, “Stable single-frequency output at 2.01 m from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34, 3029–3031 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

2007 (2)

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

2006 (1)

2004 (3)

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

2001 (2)

1984 (1)

Y. K. Park, G. Giuliani, and R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Abedin, N.

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

Amzajerdian, F.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Asaba, K.

H. Fukuoka, M. Kadoya, and K. Asaba, “Injection-seeded Tm:Ho:YLF laser,” Proc. SPIE 4153, 455–462 (2001).
[CrossRef]

Bai, Y.

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

Barnes, B. W.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Beyon, J. Y.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Byer, R. L.

Y. K. Park, G. Giuliani, and R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Chen, S.

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

Ding, A.

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

Eichler, H.-J.

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

Fry, E. S.

Fukuoka, H.

H. Fukuoka, M. Kadoya, and K. Asaba, “Injection-seeded Tm:Ho:YLF laser,” Proc. SPIE 4153, 455–462 (2001).
[CrossRef]

Gao, C.

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

Gao, C. Q.

Gao, M. W.

Giuliani, G.

Y. K. Park, G. Giuliani, and R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Hoefer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Hoffmann, D.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Hoffner, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Huber, G.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Ismail, S.

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

Jirong, Y.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

Ju, Y. L.

Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
[CrossRef]

Kadoya, M.

H. Fukuoka, M. Kadoya, and K. Asaba, “Injection-seeded Tm:Ho:YLF laser,” Proc. SPIE 4153, 455–462 (2001).
[CrossRef]

Kavaya, M. J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, and M. J. Kavaya, “1 J/pulseQ-switched 2 μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
[CrossRef] [PubMed]

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Koch, G.

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

Koch, G. J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Larsen, M. P.

Lemmerz, C.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Lin, Z.

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

Lin, Z. F.

Luttmann, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Modlin, E. A.

Morasch, V.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Nicklaus, K.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Ostermeyer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Park, Y. K.

Y. K. Park, G. Giuliani, and R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Petros, M.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Refaat, T.

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

Rubio, M.

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Singh, U.

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

Singh, U. N.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, and M. J. Kavaya, “1 J/pulseQ-switched 2 μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
[CrossRef] [PubMed]

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Song, C. W.

Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
[CrossRef]

Trieu, B. C.

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, and M. J. Kavaya, “1 J/pulseQ-switched 2 μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
[CrossRef] [PubMed]

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

Vierkotter, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

Walther, T.

Wang, R.

Wang, S.

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

Wang, X.

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

Wang, Y. Z.

Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
[CrossRef]

Wang, Z. G.

Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
[CrossRef]

Wu, C. T.

Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
[CrossRef]

Yu, J.

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, and M. J. Kavaya, “1 J/pulseQ-switched 2 μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
[CrossRef] [PubMed]

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

Zhang, Y. S.

Zheng, Y.

Zhu, L. N.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

Y. K. Park, G. Giuliani, and R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Laser Phys. Lett. (2)

Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song, and Y. Z. Wang, “Diode-pumped injection-seeded Tm, Ho:GdVO4 laser,” Laser Phys. Lett. 6, 98–101 (2009).
[CrossRef]

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm, Ho:LuAG lasers for LIDAR,” Laser Phys. Lett. 1, 285–290 (2004).
[CrossRef]

Opt. Eng. (1)

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, Y. Jirong, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm Doppler lidar for wind measurements,” Opt. Eng. 46, 116201 (2007).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (5)

X. Wang, S. Wang, A. Ding, H.-J. Eichler, Z. Lin, and C. Gao, “Tunable injection-seeded Nd:GSAG laser at 943 nm for water vapor detection,” Proc. SPIE 7479, 74790R (2009).
[CrossRef]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkotter, M. Ostermeyer, J. Hoffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[CrossRef]

G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh, “Validar: a testbed for advanced 2-micron Doppler lidar,” Proc. SPIE 5412, 87–98 (2004).
[CrossRef]

S. Chen, J. Yu, M. Petros, Y. Bai, B. C. Trieu, U. N. Singh, and M. J. Kavaya, “Diode-pumped double-pulsed Ho:Tm:LuLF laser at 2.05 m for CO2 differential absorption lidar (DIAL),” Proc. SPIE 5575, 44–49 (2004).
[CrossRef]

H. Fukuoka, M. Kadoya, and K. Asaba, “Injection-seeded Tm:Ho:YLF laser,” Proc. SPIE 4153, 455–462 (2001).
[CrossRef]

Other (1)

S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, and U. Singh, “Development of laser, detector, and receiver systems for an atmospheric CO2 lidar profiling system,” in 2008 IEEE Aerospace Conference (IEEE, 2008), pp. 1–7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the injection-seeded Tm:YAG Q-switched laser. O.C., output coupler; PBS, polarizing beam splitter; AO, acousto-optic Q switcher.

Fig. 2
Fig. 2

Schematic of the ramp–hold–fire process.

Fig. 3
Fig. 3

Single-pulse energy and pulse width as a function of the total output power of the pump lasers.

Fig. 4
Fig. 4

Schematic of the injection seeding principle. FSR, free spectral region of the slave laser.

Fig. 5
Fig. 5

Different interference signals with different Δ U : (a)  Δ U = 4.7 V , (b)  Δ U = 11.7 V , (c)  Δ U = 15.2 V . The signal in the black circle is the interference signal at the hold voltage.

Fig. 6
Fig. 6

Interference signal during scanning the PZT.

Fig. 7
Fig. 7

Beating signal between the master laser and slave laser.

Fig. 8
Fig. 8

FFT spectrum of heterodyne beating signals between the master laser and slave laser with different set-back voltages Δ U .

Fig. 9
Fig. 9

Center frequency of heterodyne beating signal as a function of Δ U .

Fig. 10
Fig. 10

Frequency stability of the injection-seeded Q-switched Tm:YAG laser measured in 1 h . (a)  Δ U was kept constant at 11.7 V ; (b)  Δ U was optimized at different ramp voltages.

Tables (1)

Tables Icon

Table 1 Optimal Δ U for Different Ramp Voltages

Metrics