Abstract

Plasma scalding is one of the most typical laser damage morphologies induced by a nanosecond laser with a wavelength of 1053nm in HfO2/SiO2 multilayer films. In this paper, the characteristics of plasma scalds are systematically investigated with multiple methods. The scalding behaves as surface discoloration under a microscope. The shape is nearly circular when the laser incidence angle is close to normal incidence and is elliptical at oblique incidence. The nodular-ejection pit is in the center of the scalding region when the laser irradiates at the incidence angle close to normal incidence and in the right of the scalding region when the laser irradiates from left to right at oblique incidence. The maximum damage size of the scalding increases with laser energy. The edge of the scalding is high compared with the unirradiated film surface, and the region tending to the center is concave. Plasma scald is proved to be surface damage. The maximum depth of a scald increases with its size. Tiny pits of nanometer scale can be seen in the scalding film under a scanning electronic microscope at a higher magnification. The absorptions of the surface plasma scalds tend to be approximately the same as the lower absorptions of test sites without laser irradiation. Scalds do not grow during further illumination pulses until 65J/cm2. The formation of surface plasma scalding may be related to the occurrence of the laser-supported detonation wave.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
    [CrossRef]
  2. C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
    [CrossRef]
  3. R. Chow, M. Runkel, and J. R. Taylor, “Laser damage testing of small optics for the National Ignition Facility,” Appl. Opt. 44, 3527–3531 (2005).
    [CrossRef] [PubMed]
  4. F. Y. Génin, and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
    [CrossRef]
  5. X. F. Liu, X. Li, D. W. Li, Y. A. Zhao, and J. D. Shao, “1064 nm laser conditioning effect of HfO2/SiO2 high reflectors deposited by e-beam,” Chin. J. Laser. 36, 1545–1549 (2009) (in Chinese).
    [CrossRef]
  6. L. Sheehan, M. Kozlowski, and B. Trench, “Full aperture laser conditioning of multilayer mirrors and polarizers,” Proc. SPIE 2633, 457–463 (1995).
    [CrossRef]
  7. F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
    [CrossRef]
  8. X. F. Liu, X. Li, D. W. Li, Y. A. Zhao, and J. D. Shao, “An automated damage diagnostic system for laser damage threshold tests,” Chin. Opt. Lett. 8, 407–410 (2010).
  9. X. F. Liu, D. W. Li, Y. A. Zhao, X. Li, X. L. Ling, and J. D. Shao, “Damage characteristics of HfO2/SiO245° incidence high reflector in 1-on-1 and N-on-1 tests,” Chin. Opt. Lett. 8, 41–44(2010).
    [CrossRef]
  10. J. Hue, F. Y. Génin, and S. Maricle, “Comparison of the single pulse delaminate damage size for 3 ns and 10 ns pulses,” Lawrence Livermore National Laboratory report (12 June 1996).
  11. X. F. Liu, D. W. Li, Y. A. Zhao, and X. Li, “Further investigation on the damage characteristic of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
    [CrossRef] [PubMed]
  12. H. Y. Hu, Z. X. Fan, and Y. Liu, “Measuring weak absorptance of thin film coatings by surface thermal lensing technique,” Laser Phys. 10, 633–639 (2000).
  13. A. L. Rigatti and D. J. Smith, “Status of optics on the OMEGA laser after 18 months of operation,” Proc. SPIE 2966, 441–450(1997).
    [CrossRef]
  14. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef] [PubMed]
  15. Y. G. Shan, H. B. He, C. Y. Wei, S. H. Li, M. Zhou, D. W. Li, and Y. A. Zhao, “Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating,” Appl. Opt. 49, 4290–4295 (2010).
    [CrossRef] [PubMed]
  16. M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18, 35–39 (2008).
    [CrossRef]
  17. E. Stormer and M. von Allmen, “Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers,” J. Appl. Phys. 49, 5648–5654 (1978).
    [CrossRef]
  18. A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys. A 71, 601–608 (2000).
    [CrossRef]

2010

2009

X. F. Liu, X. Li, D. W. Li, Y. A. Zhao, and J. D. Shao, “1064 nm laser conditioning effect of HfO2/SiO2 high reflectors deposited by e-beam,” Chin. J. Laser. 36, 1545–1549 (2009) (in Chinese).
[CrossRef]

2008

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18, 35–39 (2008).
[CrossRef]

2006

2005

2000

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys. A 71, 601–608 (2000).
[CrossRef]

H. Y. Hu, Z. X. Fan, and Y. Liu, “Measuring weak absorptance of thin film coatings by surface thermal lensing technique,” Laser Phys. 10, 633–639 (2000).

1997

A. L. Rigatti and D. J. Smith, “Status of optics on the OMEGA laser after 18 months of operation,” Proc. SPIE 2966, 441–450(1997).
[CrossRef]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

1996

F. Y. Génin, and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

1995

L. Sheehan, M. Kozlowski, and B. Trench, “Full aperture laser conditioning of multilayer mirrors and polarizers,” Proc. SPIE 2633, 457–463 (1995).
[CrossRef]

1992

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

1978

E. Stormer and M. von Allmen, “Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers,” J. Appl. Phys. 49, 5648–5654 (1978).
[CrossRef]

Alexandre, W.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Arakawa, Y.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18, 35–39 (2008).
[CrossRef]

Billon, D.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Chow, R.

Cordillot, C.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Fan, Z. X.

H. Y. Hu, Z. X. Fan, and Y. Liu, “Measuring weak absorptance of thin film coatings by surface thermal lensing technique,” Laser Phys. 10, 633–639 (2000).

Feit, M. D.

Floch, H. G.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Fournet, C.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Geenen, B.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Génin, F. Y.

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys. A 71, 601–608 (2000).
[CrossRef]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

F. Y. Génin, and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

J. Hue, F. Y. Génin, and S. Maricle, “Comparison of the single pulse delaminate damage size for 3 ns and 10 ns pulses,” Lawrence Livermore National Laboratory report (12 June 1996).

Griffin, A. J.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

He, H. B.

Hu, H. Y.

H. Y. Hu, Z. X. Fan, and Y. Liu, “Measuring weak absorptance of thin film coatings by surface thermal lensing technique,” Laser Phys. 10, 633–639 (2000).

Hue, J.

J. Hue, F. Y. Génin, and S. Maricle, “Comparison of the single pulse delaminate damage size for 3 ns and 10 ns pulses,” Lawrence Livermore National Laboratory report (12 June 1996).

Kawamura, K.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18, 35–39 (2008).
[CrossRef]

Komurasaki, K.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18, 35–39 (2008).
[CrossRef]

Kozlowski, M.

L. Sheehan, M. Kozlowski, and B. Trench, “Full aperture laser conditioning of multilayer mirrors and polarizers,” Proc. SPIE 2633, 457–463 (1995).
[CrossRef]

Kozlowski, M. R.

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

Li, D. W.

Li, S. H.

Li, X.

Ling, X. L.

Liu, X. F.

Liu, Y.

H. Y. Hu, Z. X. Fan, and Y. Liu, “Measuring weak absorptance of thin film coatings by surface thermal lensing technique,” Laser Phys. 10, 633–639 (2000).

Maricle, S.

J. Hue, F. Y. Génin, and S. Maricle, “Comparison of the single pulse delaminate damage size for 3 ns and 10 ns pulses,” Lawrence Livermore National Laboratory report (12 June 1996).

Ollivier, F.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Pinot, B.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Pistor, T. V.

Rigatti, A. L.

A. L. Rigatti and D. J. Smith, “Status of optics on the OMEGA laser after 18 months of operation,” Proc. SPIE 2966, 441–450(1997).
[CrossRef]

Roussel, A.

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

Runkel, M.

Salleo, A.

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys. A 71, 601–608 (2000).
[CrossRef]

Sands, T.

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys. A 71, 601–608 (2000).
[CrossRef]

Shan, Y. G.

Shao, J. D.

Sheehan, L.

L. Sheehan, M. Kozlowski, and B. Trench, “Full aperture laser conditioning of multilayer mirrors and polarizers,” Proc. SPIE 2633, 457–463 (1995).
[CrossRef]

Smith, D. J.

A. L. Rigatti and D. J. Smith, “Status of optics on the OMEGA laser after 18 months of operation,” Proc. SPIE 2966, 441–450(1997).
[CrossRef]

Stolz, C. J.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef] [PubMed]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

F. Y. Génin, and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Stormer, E.

E. Stormer and M. von Allmen, “Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers,” J. Appl. Phys. 49, 5648–5654 (1978).
[CrossRef]

Taylor, J. R.

Thomas, M. D.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

Trench, B.

L. Sheehan, M. Kozlowski, and B. Trench, “Full aperture laser conditioning of multilayer mirrors and polarizers,” Proc. SPIE 2633, 457–463 (1995).
[CrossRef]

Ushio, M.

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18, 35–39 (2008).
[CrossRef]

von Allmen, M.

E. Stormer and M. von Allmen, “Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers,” J. Appl. Phys. 49, 5648–5654 (1978).
[CrossRef]

Wei, C. Y.

Zhao, Y. A.

Zhou, M.

Appl. Opt.

Appl. Phys. A

A. Salleo, T. Sands, and F. Y. Génin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser,” Appl. Phys. A 71, 601–608 (2000).
[CrossRef]

Chin. J. Laser.

X. F. Liu, X. Li, D. W. Li, Y. A. Zhao, and J. D. Shao, “1064 nm laser conditioning effect of HfO2/SiO2 high reflectors deposited by e-beam,” Chin. J. Laser. 36, 1545–1549 (2009) (in Chinese).
[CrossRef]

Chin. Opt. Lett.

J. Appl. Phys.

E. Stormer and M. von Allmen, “Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers,” J. Appl. Phys. 49, 5648–5654 (1978).
[CrossRef]

Laser Phys.

H. Y. Hu, Z. X. Fan, and Y. Liu, “Measuring weak absorptance of thin film coatings by surface thermal lensing technique,” Laser Phys. 10, 633–639 (2000).

Proc. SPIE

A. L. Rigatti and D. J. Smith, “Status of optics on the OMEGA laser after 18 months of operation,” Proc. SPIE 2966, 441–450(1997).
[CrossRef]

F. Y. Génin, and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

L. Sheehan, M. Kozlowski, and B. Trench, “Full aperture laser conditioning of multilayer mirrors and polarizers,” Proc. SPIE 2633, 457–463 (1995).
[CrossRef]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

C. Fournet, B. Pinot, B. Geenen, F. Ollivier, W. Alexandre, H. G. Floch, A. Roussel, C. Cordillot, and D. Billon, “High damage threshold mirrors and polarizers in the ZrO2/SiO2 and HfO2/SiO2 dielectric system,” Proc. SPIE 1624, 282–293(1992).
[CrossRef]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

Shock Waves

M. Ushio, K. Komurasaki, K. Kawamura, and Y. Arakawa, “Effect of laser supported detonation wave confinement on termination conditions,” Shock Waves 18, 35–39 (2008).
[CrossRef]

Other

J. Hue, F. Y. Génin, and S. Maricle, “Comparison of the single pulse delaminate damage size for 3 ns and 10 ns pulses,” Lawrence Livermore National Laboratory report (12 June 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Microscope micrograms of plasma scalds after one shot.

Fig. 2
Fig. 2

Incident direction of the laser and the location of the pit in our experiments.

Fig. 3
Fig. 3

Size distribution of scalds versus energy of the irradiation laser.

Fig. 4
Fig. 4

Surface profiler results of plasma scalds. (a), (b) The surface profiler results of the plasma scalds marked by (a) and (b) in the top figure. The probe of the surface profiler moves along the dotted line shown in the top figure.

Fig. 5
Fig. 5

Maximum depth of a plasma scald versus its maximum size.

Fig. 6
Fig. 6

SEM microgram of the plasma scald; microareas (a), (b), (c), and (d) are observed at a higher magnification in Fig. 7.

Fig. 7
Fig. 7

(a)(d) Local views of (a), (b), (c), and (d), marked by rectangles, in Fig. 6.

Fig. 8
Fig. 8

Microareas chosen for RMS roughness test. Regions 1 and 2 are undamaged regions; regions 3, 4, and 5 are microareas in the scalding region.

Fig. 9
Fig. 9

RMS roughness results of the microareas marked by rectangles 1, 2, 3, 4, and 5 in Fig. 8.

Fig. 10
Fig. 10

Absorptions of scalds and unirridiated film.

Fig. 11
Fig. 11

Average diameters of scalds as a function of irradiated energy after 1 shot and 600 shots.

Fig. 12
Fig. 12

Typical damage morphologies of the plasma scald in the film surface after 1 shot and 600 shots.

Fig. 13
Fig. 13

Shape of the region contaminated by the ejections.

Metrics