Abstract

Silver, gold, copper and platinum nanoparticles (NPs) were grown on surfaces in the form of patterns by the exposure of laser radiation onto droplets of metal ion solutions and the aid of a reducing agent. The generation of patterns from metallic NPs was achieved by combining induced growth of NPs and nanostructures by laser incidence directly on surfaces and optical image formation techniques for transferring the patterns. Near-UV (363.8nm) and visible (532nm) laser wavelengths were used for the laser-induced growth of NPs into microstructures on glass, quartz, stainless steel, silicon, and gold-on-silicon substrates. The sizes of the patterns formed were on the micrometer scale and the sizes of the transferred patterns were on the millimeter scale. The patterns formed were generated by optical transference of image and interference of laser beams. Ag and Au substrates were highly active in surface enhanced Raman spectroscopy (SERS). The enhanced Raman activity was measured for SERS probe molecules: 9H-purin-6-amine (adenine) and 1,2-bis (4-pyridyl)-ethane analytes on Ag and Au substrates, respectively. The enhancement factors obtained were 1.8×105 and 6.2×106, respectively.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, 2006).
    [CrossRef]
  2. J. Turkevich, P. C. Stevenson, J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
    [CrossRef]
  3. Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
    [CrossRef] [PubMed]
  4. N. A. A. Hatab, J. M. Oran, M. J. Sepaniak, “Surface- enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Na. 2, 377–385 (2008).
    [CrossRef]
  5. X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
    [CrossRef]
  6. H. Wang, C. S. Levin, N. J. Halas, “Nanosphere arrays with controlled sub-10 nm gaps as surface-enhanced Raman spectroscopy substrates,” J. Am. Chem. Soc. 127, 14992–14993 (2005).
    [CrossRef] [PubMed]
  7. E. J. Bjerneld, F. Svedberg, M. Kall, “Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering,” Nano Lett. 3, 593–596 (2003).
    [CrossRef]
  8. X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
    [CrossRef]
  9. J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (Prentice-Hall, Inc, 1995).
  10. C. Daniel, F. Mucklich, Z. Liu, “Periodical micro- nano-structuring of metallic surface by interfering laser beams,” Appl. Surf. Sci. 208–209, 317–321 (2003).
    [CrossRef]
  11. A. Lasagni, M. D’Alessandria, R. Giovanelli, F. Mucklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
    [CrossRef]
  12. A. Lasagni, C. Holzapfel, F. Mücklich, “Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films,” Appl. Surf. Sci. 253, 1555–1560 (2006).
    [CrossRef]
  13. A. Lasagni, C. Holzapfel, T. Weirich, F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253, 8070–8074 (2007).
    [CrossRef]
  14. A. Lasagni, F. Mucklich, “Structuring of metallic bi- and tri-nano-layer films by laser interference irradiation: control of the structure depth,” Appl. Surf. Sci. 247, 32–37 (2005).
    [CrossRef]
  15. A. Lasagni, F. Mücklich, “Study of the multilayer metallic films topography modified by laser interference irradiation,” Appl. Surf. Sci. 240, 214–221 (2005).
    [CrossRef]
  16. H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
    [CrossRef]
  17. H. Shin, H. Lee, J. Sung, M. Lee, “Parallel laser printing of nanoparticulate silver thin film patterns for electronics,” Appl. Phys. Lett. 92, 233107 (2008).
    [CrossRef]
  18. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
    [CrossRef] [PubMed]
  19. L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
    [CrossRef]
  20. F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).
  21. A. Lasagni, M. D'Alessandria, R. Giovanelli, F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
    [CrossRef]
  22. E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, M. Käll, “Laser-induced growth of Ag nanoparticles from aqueous solutions,” Chem. Phys. Chem. 3, 116–119 (2002).
    [CrossRef] [PubMed]

2009

L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
[CrossRef]

2008

N. A. A. Hatab, J. M. Oran, M. J. Sepaniak, “Surface- enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Na. 2, 377–385 (2008).
[CrossRef]

H. Shin, H. Lee, J. Sung, M. Lee, “Parallel laser printing of nanoparticulate silver thin film patterns for electronics,” Appl. Phys. Lett. 92, 233107 (2008).
[CrossRef]

2007

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
[CrossRef] [PubMed]

A. Lasagni, M. D’Alessandria, R. Giovanelli, F. Mucklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

A. Lasagni, C. Holzapfel, T. Weirich, F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253, 8070–8074 (2007).
[CrossRef]

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

A. Lasagni, M. D'Alessandria, R. Giovanelli, F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

2006

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
[CrossRef] [PubMed]

A. Lasagni, C. Holzapfel, F. Mücklich, “Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films,” Appl. Surf. Sci. 253, 1555–1560 (2006).
[CrossRef]

2005

A. Lasagni, F. Mucklich, “Structuring of metallic bi- and tri-nano-layer films by laser interference irradiation: control of the structure depth,” Appl. Surf. Sci. 247, 32–37 (2005).
[CrossRef]

A. Lasagni, F. Mücklich, “Study of the multilayer metallic films topography modified by laser interference irradiation,” Appl. Surf. Sci. 240, 214–221 (2005).
[CrossRef]

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
[CrossRef]

H. Wang, C. S. Levin, N. J. Halas, “Nanosphere arrays with controlled sub-10 nm gaps as surface-enhanced Raman spectroscopy substrates,” J. Am. Chem. Soc. 127, 14992–14993 (2005).
[CrossRef] [PubMed]

2003

E. J. Bjerneld, F. Svedberg, M. Kall, “Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering,” Nano Lett. 3, 593–596 (2003).
[CrossRef]

C. Daniel, F. Mucklich, Z. Liu, “Periodical micro- nano-structuring of metallic surface by interfering laser beams,” Appl. Surf. Sci. 208–209, 317–321 (2003).
[CrossRef]

2002

E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, M. Käll, “Laser-induced growth of Ag nanoparticles from aqueous solutions,” Chem. Phys. Chem. 3, 116–119 (2002).
[CrossRef] [PubMed]

1991

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
[CrossRef]

1951

J. Turkevich, P. C. Stevenson, J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[CrossRef]

An, J.

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

Aroca, R.

R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, 2006).
[CrossRef]

Balan, L.

L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
[CrossRef]

Bayvel, P.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
[CrossRef] [PubMed]

Bjerneld, E. J.

E. J. Bjerneld, F. Svedberg, M. Kall, “Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering,” Nano Lett. 3, 593–596 (2003).
[CrossRef]

E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, M. Käll, “Laser-induced growth of Ag nanoparticles from aqueous solutions,” Chem. Phys. Chem. 3, 116–119 (2002).
[CrossRef] [PubMed]

Bor, Z.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
[CrossRef]

Callahan, D. L.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
[CrossRef]

Corredor, C.

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

D’Alessandria, M.

A. Lasagni, M. D’Alessandria, R. Giovanelli, F. Mucklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

D'Alessandria, M.

A. Lasagni, M. D'Alessandria, R. Giovanelli, F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

Daniel, C.

C. Daniel, F. Mucklich, Z. Liu, “Periodical micro- nano-structuring of metallic surface by interfering laser beams,” Appl. Surf. Sci. 208–209, 317–321 (2003).
[CrossRef]

Duyne, R. P. V.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
[CrossRef]

Elliott, J.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
[CrossRef] [PubMed]

Giovanelli, R.

A. Lasagni, M. D’Alessandria, R. Giovanelli, F. Mucklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

A. Lasagni, M. D'Alessandria, R. Giovanelli, F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

Halas, N. J.

H. Wang, C. S. Levin, N. J. Halas, “Nanosphere arrays with controlled sub-10 nm gaps as surface-enhanced Raman spectroscopy substrates,” J. Am. Chem. Soc. 127, 14992–14993 (2005).
[CrossRef] [PubMed]

Hatab, N. A. A.

N. A. A. Hatab, J. M. Oran, M. J. Sepaniak, “Surface- enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Na. 2, 377–385 (2008).
[CrossRef]

Hillier, J.

J. Turkevich, P. C. Stevenson, J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[CrossRef]

Holzapfel, C.

A. Lasagni, C. Holzapfel, T. Weirich, F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253, 8070–8074 (2007).
[CrossRef]

A. Lasagni, C. Holzapfel, F. Mücklich, “Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films,” Appl. Surf. Sci. 253, 1555–1560 (2006).
[CrossRef]

Kall, M.

E. J. Bjerneld, F. Svedberg, M. Kall, “Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering,” Nano Lett. 3, 593–596 (2003).
[CrossRef]

Käll, M.

E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, M. Käll, “Laser-induced growth of Ag nanoparticles from aqueous solutions,” Chem. Phys. Chem. 3, 116–119 (2002).
[CrossRef] [PubMed]

Kleinermanns, K.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
[CrossRef] [PubMed]

Lasagni, A.

A. Lasagni, C. Holzapfel, T. Weirich, F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253, 8070–8074 (2007).
[CrossRef]

A. Lasagni, M. D’Alessandria, R. Giovanelli, F. Mucklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

A. Lasagni, M. D'Alessandria, R. Giovanelli, F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

A. Lasagni, C. Holzapfel, F. Mücklich, “Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films,” Appl. Surf. Sci. 253, 1555–1560 (2006).
[CrossRef]

A. Lasagni, F. Mucklich, “Structuring of metallic bi- and tri-nano-layer films by laser interference irradiation: control of the structure depth,” Appl. Surf. Sci. 247, 32–37 (2005).
[CrossRef]

A. Lasagni, F. Mücklich, “Study of the multilayer metallic films topography modified by laser interference irradiation,” Appl. Surf. Sci. 240, 214–221 (2005).
[CrossRef]

Lee, H.

H. Shin, H. Lee, J. Sung, M. Lee, “Parallel laser printing of nanoparticulate silver thin film patterns for electronics,” Appl. Phys. Lett. 92, 233107 (2008).
[CrossRef]

Lee, M.

H. Shin, H. Lee, J. Sung, M. Lee, “Parallel laser printing of nanoparticulate silver thin film patterns for electronics,” Appl. Phys. Lett. 92, 233107 (2008).
[CrossRef]

Levin, C. S.

H. Wang, C. S. Levin, N. J. Halas, “Nanosphere arrays with controlled sub-10 nm gaps as surface-enhanced Raman spectroscopy substrates,” J. Am. Chem. Soc. 127, 14992–14993 (2005).
[CrossRef] [PubMed]

Liu, Z.

C. Daniel, F. Mucklich, Z. Liu, “Periodical micro- nano-structuring of metallic surface by interfering laser beams,” Appl. Surf. Sci. 208–209, 317–321 (2003).
[CrossRef]

Lombardi, J. R.

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

Lougnot, D. J.

L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
[CrossRef]

Meyer-Arendt, J. R.

J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (Prentice-Hall, Inc, 1995).

Mikhailov, V.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
[CrossRef] [PubMed]

Mucklich, F.

A. Lasagni, M. D’Alessandria, R. Giovanelli, F. Mucklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

A. Lasagni, F. Mucklich, “Structuring of metallic bi- and tri-nano-layer films by laser interference irradiation: control of the structure depth,” Appl. Surf. Sci. 247, 32–37 (2005).
[CrossRef]

C. Daniel, F. Mucklich, Z. Liu, “Periodical micro- nano-structuring of metallic surface by interfering laser beams,” Appl. Surf. Sci. 208–209, 317–321 (2003).
[CrossRef]

Mücklich, F.

A. Lasagni, C. Holzapfel, T. Weirich, F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253, 8070–8074 (2007).
[CrossRef]

A. Lasagni, M. D'Alessandria, R. Giovanelli, F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

A. Lasagni, C. Holzapfel, F. Mücklich, “Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films,” Appl. Surf. Sci. 253, 1555–1560 (2006).
[CrossRef]

A. Lasagni, F. Mücklich, “Study of the multilayer metallic films topography modified by laser interference irradiation,” Appl. Surf. Sci. 240, 214–221 (2005).
[CrossRef]

Murty, K. V. G. K.

E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, M. Käll, “Laser-induced growth of Ag nanoparticles from aqueous solutions,” Chem. Phys. Chem. 3, 116–119 (2002).
[CrossRef] [PubMed]

Oran, J. M.

N. A. A. Hatab, J. M. Oran, M. J. Sepaniak, “Surface- enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Na. 2, 377–385 (2008).
[CrossRef]

Pedrotti, F. L.

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

Pedrotti, L. S.

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

Peng, Z.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
[CrossRef] [PubMed]

Phillips, H. M.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
[CrossRef]

Prikulis, J.

E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, M. Käll, “Laser-induced growth of Ag nanoparticles from aqueous solutions,” Chem. Phys. Chem. 3, 116–119 (2002).
[CrossRef] [PubMed]

Sauerbrey, R.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
[CrossRef]

Sepaniak, M. J.

N. A. A. Hatab, J. M. Oran, M. J. Sepaniak, “Surface- enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Na. 2, 377–385 (2008).
[CrossRef]

Shin, H.

H. Shin, H. Lee, J. Sung, M. Lee, “Parallel laser printing of nanoparticulate silver thin film patterns for electronics,” Appl. Phys. Lett. 92, 233107 (2008).
[CrossRef]

Soppera, O.

L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
[CrossRef]

Spliethoff, B.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
[CrossRef] [PubMed]

Stevenson, P. C.

J. Turkevich, P. C. Stevenson, J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[CrossRef]

Stuart, D. A.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
[CrossRef]

Sung, J.

H. Shin, H. Lee, J. Sung, M. Lee, “Parallel laser printing of nanoparticulate silver thin film patterns for electronics,” Appl. Phys. Lett. 92, 233107 (2008).
[CrossRef]

Svedberg, F.

E. J. Bjerneld, F. Svedberg, M. Kall, “Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering,” Nano Lett. 3, 593–596 (2003).
[CrossRef]

Szabo, G.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
[CrossRef]

Tesche, B.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
[CrossRef] [PubMed]

Turck, C.

L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
[CrossRef]

Turkevich, J.

J. Turkevich, P. C. Stevenson, J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[CrossRef]

Vidal, L. C.

L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
[CrossRef]

Walther, T.

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
[CrossRef] [PubMed]

Wang, H.

H. Wang, C. S. Levin, N. J. Halas, “Nanosphere arrays with controlled sub-10 nm gaps as surface-enhanced Raman spectroscopy substrates,” J. Am. Chem. Soc. 127, 14992–14993 (2005).
[CrossRef] [PubMed]

Weirich, T.

A. Lasagni, C. Holzapfel, T. Weirich, F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253, 8070–8074 (2007).
[CrossRef]

Wurtz, G. A.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
[CrossRef] [PubMed]

Xu, S.

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

Xu, W.

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

Yonzon, C. R.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
[CrossRef]

Young, M. A.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
[CrossRef]

Zayats, A. V.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
[CrossRef]

Zhao, B.

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

Zheng, X.

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

ACS Na.

N. A. A. Hatab, J. M. Oran, M. J. Sepaniak, “Surface- enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Na. 2, 377–385 (2008).
[CrossRef]

Appl. Phys. Lett.

H. M. Phillips, D. L. Callahan, R. Sauerbrey, G. Szabo, Z. Bor, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58, 2761–2763 (1991).
[CrossRef]

H. Shin, H. Lee, J. Sung, M. Lee, “Parallel laser printing of nanoparticulate silver thin film patterns for electronics,” Appl. Phys. Lett. 92, 233107 (2008).
[CrossRef]

Appl. Surf. Sci.

C. Daniel, F. Mucklich, Z. Liu, “Periodical micro- nano-structuring of metallic surface by interfering laser beams,” Appl. Surf. Sci. 208–209, 317–321 (2003).
[CrossRef]

A. Lasagni, M. D’Alessandria, R. Giovanelli, F. Mucklich, “Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

A. Lasagni, C. Holzapfel, F. Mücklich, “Production of two-dimensional periodical structures by laser interference irradiation on bi-layered metallic thin films,” Appl. Surf. Sci. 253, 1555–1560 (2006).
[CrossRef]

A. Lasagni, C. Holzapfel, T. Weirich, F. Mücklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253, 8070–8074 (2007).
[CrossRef]

A. Lasagni, F. Mucklich, “Structuring of metallic bi- and tri-nano-layer films by laser interference irradiation: control of the structure depth,” Appl. Surf. Sci. 247, 32–37 (2005).
[CrossRef]

A. Lasagni, F. Mücklich, “Study of the multilayer metallic films topography modified by laser interference irradiation,” Appl. Surf. Sci. 240, 214–221 (2005).
[CrossRef]

A. Lasagni, M. D'Alessandria, R. Giovanelli, F. Mücklich, “Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy,” Appl. Surf. Sci. 254, 930–936 (2007).
[CrossRef]

Chem. Mater.

L. Balan, C. Turck, O. Soppera, L. C. Vidal, D. J. Lougnot, “Holographic recording with polymer nano composites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chem. Mater. 21, 5711–5718 (2009).
[CrossRef]

Chem. Phys. Chem.

E. J. Bjerneld, K. V. G. K. Murty, J. Prikulis, M. Käll, “Laser-induced growth of Ag nanoparticles from aqueous solutions,” Chem. Phys. Chem. 3, 116–119 (2002).
[CrossRef] [PubMed]

Discuss. Faraday Soc.

J. Turkevich, P. C. Stevenson, J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[CrossRef]

IEE Proc. Nanobiotechnol.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc. Nanobiotechnol. 152, 195–206 (2005).
[CrossRef]

J. Am. Chem. Soc.

H. Wang, C. S. Levin, N. J. Halas, “Nanosphere arrays with controlled sub-10 nm gaps as surface-enhanced Raman spectroscopy substrates,” J. Am. Chem. Soc. 127, 14992–14993 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B

Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, “Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution,” J. Phys. Chem. B 110, 2549–2554 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, J. R. Lombardi, “Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect,” J. Phys. Chem. C 111, 14962–14967 (2007).
[CrossRef]

Nano Lett.

E. J. Bjerneld, F. Svedberg, M. Kall, “Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering,” Nano Lett. 3, 593–596 (2003).
[CrossRef]

Phys. Rev. Lett.

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, A. V. Zayats, “Dispersing light with surface plasmon polaritonic crystals,” Phys. Rev. Lett. 99, 083901 (2007).
[CrossRef] [PubMed]

Other

F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (Prentice-Hall, Inc, 1995).

R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser induction scheme: (a) Laser (532 or 363.8 nm ). (b) Optical setup. (c) Substrate. (d) Droplets of metal ions growth solution.

Fig. 2
Fig. 2

Optical setups used. (a) Setup 1: one-lens optical layout. (b) Setup 2: two-lens optical layout. (c) Setup 3: use of beam splitters. The object to lens distance is represented by d o ; d i represents the image to lens distance; M is the transversal magnification; f focal length of the lens; b is the beamsplitter; m is a mirror; h is the lateral distance between the laser beams.

Fig. 3
Fig. 3

White light images obtained by optical microscopy. (a) Image of a beam splitter used as a grid: the white side is reflective to UV-visible light while the dark side is transparent to UV-visible light. (b) TPI made from Ag NPs using optical setup 2, an intensity of 6.8 W / cm 2 of laser irradiation at 363.8 nm and an ET of 60 s on glass as substrate. (c) TPI made from Pt NPs using optical setup 1 and a 10 cm focal length lens ( d o = 20 cm ; d i = 20 cm ) and an intensity of 1.7 W / cm 2 of 363.8 nm laser irradiation for 120 s on glass. (d) TPI made from Cu NPs using optical setup 1 and a lens of 10 cm focal length ( d o = 20 cm ; d i = 20 cm ) and an intensity of 1.7 W / cm 2 of 363.8 nm for 120 s on glass. (e) TPI fabricated using Ag NPs and optical setup 1 using a lens of 2 cm focal length ( d o = 70 cm ; d i 2 cm ) at 2.3 kW / cm 2 of 532 nm for 10 s on glass. (f) TPI obtained from Ag NPs using optical setup 1 and a 10 cm focal length lens ( d o = 10 cm ; d i = 12 cm ) at 1.7 W / cm 2 of 363.8 nm at an ET of 120 s on glass (g) TPI prepared from depositing Ag NPs using optical setup 1 using a lens of focal length 10 cm ( d o = 10 cm ; d i = 12 cm ) at 1.7 W / cm 2 of 363.8 nm for ET of 120 s on glass. (h) TPI made from Au NPs from optical setup 1 using a lens focal length 10 cm ( d o = 20 cm ; d i = 20 cm ) at 6.7 W / cm 2 of 363.8 nm by ET of 300 s on Si. (i) TPI obtained from depositing Au NPs with optical setup 1 using a lens focal length 10 cm ( d o = 20 cm ; d i = 20 cm ) 6.7 W / cm 2 of 363.8 nm at an ET of 300 s on glass. (j) TPI of Au from setup 1 using a lens focal length 10 cm ( d o = 20 cm ; d i = 20 cm ) at 6.7 W / cm 2 of 363.8 nm at ET of 120 s on glass coated with 15 nm Cr. (k) Ag LIP obtained by using optical setup 3 using a 532 nm laser beam at 1.5 ° at 12.7 kW / cm 2 at an ET of 10 s on glass (l)  30 μm scale marker image (k). (m) SEM image of the same LIP. (n)  1 μm scale marker of the SEM image (m). (o) Comparison of sizes of the transferred patterns with a penny.

Fig. 4
Fig. 4

(a) and (b) TEM images for Ag NPs detached from the glass substrate by sonication in H 2 O ( 50 nm and 80 nm scale marker, respectively). (c) and (d): AFM images of the Ag TPI on glass in two different regions of the surface.

Fig. 5
Fig. 5

(a) Depths of three TPIs made from Ag NPs at 120 s and their average value and one at 60 s of induction at laser intensity of 6.4 W / cm 2 . (b) SERS spectra of adenine deposited on Ag NPs on glass prepared by a laser intensity of 1.7 W / cm 2 and ET of 60 s ; background SERS spectra of same substrate and spectra Raman of solid adenine. (c) SERS spectra of BPE deposited on Au NPs on glass with 15 nm Cr prepared by laser intensity of 6.7 W / cm 2 and ET of 120 s and background SERS spectrum of the substrate. (d) SERS line maps using BPE as SERS probe molecule on substrate prepared by depositing Au NPs on glass coated with 15 nm Cr at a laser intensity of 6.7 W / cm 2 and ET of 120 s (black curve with diamonds) and 60 s (gray curve with squares). Gaussian fitting of intensity pattern included as reference (continuous thin curve).

Tables (2)

Tables Icon

Table 1 Minimum ETs (Approximate Values) for Induced Growth of NPs Using LIDS with LIP on Different Substrates

Tables Icon

Table 2 Roughness Indication Parameters for AFM Images

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M TPI = ( 1 0 d o 1 ) ( 1 f 1 0 1 ) ( 1 0 d i 1 ) .
1 f = 1 d o + 1 d i .
I ( x ) = 2 I 0 [ cos [ 4 π x λ sin ( θ 2 ) ] + 1 ] ,
d = λ 2 sin ( θ / 2 ) .
EF = I surf I bulk x N bulk N surf ,

Metrics