Abstract

This paper describes a new optical concept for a telescope. It is essentially made by a single refractive element used in a nontraditional way. The telescope is based upon the internal and multiple reflections over the surfaces of this refractive element. It offers important advantages in the alignment and stability. In this paper, some representative configurations of telescope and a focal adapter based on the same concept are presented, trying to underline the main advantages. A brief in-depth description of the performances is reported.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Christie and D. O. Hendrix, “The Schmidt principle in optical design,” Publ. Astron. Soc. Pac. 51, 223 (1939).
    [CrossRef]
  2. A. S. De Vany, “Optical design for two telescopes, part B: an f/5 solid telescope,” Appl. Opt. 2, 201–204 (1963).
    [CrossRef]
  3. J. R. Wertz and W. J. Larson, Space Mission Analysis and Design (Kluwer Academic, 1999).
  4. Schott AG, http://www.us.schott.com/advanced_optics.
  5. E. Hecht, Optics (Addison Wesley, 2002).
  6. Ohara Corporation, http://www.oharacorp.com.
  7. R. N. Wilson, Reflecting Telescope Optics I (Springer, 2004).
  8. D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000).
  9. M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
    [CrossRef]
  10. A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
    [CrossRef]
  11. J. H. Simmons and K. S. Potter, Optical Materials(Academic, 2000).
  12. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
    [CrossRef]
  13. A. Anders, “Plasma and ion sources in large area coating: a review,” Surf. Coat. Technol. 200 (5–6), 1893–1906 (2005).
    [CrossRef]

2010 (1)

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

2005 (1)

A. Anders, “Plasma and ion sources in large area coating: a review,” Surf. Coat. Technol. 200 (5–6), 1893–1906 (2005).
[CrossRef]

2004 (3)

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

R. N. Wilson, Reflecting Telescope Optics I (Springer, 2004).

2002 (1)

E. Hecht, Optics (Addison Wesley, 2002).

2000 (2)

D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000).

J. H. Simmons and K. S. Potter, Optical Materials(Academic, 2000).

1999 (1)

J. R. Wertz and W. J. Larson, Space Mission Analysis and Design (Kluwer Academic, 1999).

1963 (1)

1939 (1)

W. H. Christie and D. O. Hendrix, “The Schmidt principle in optical design,” Publ. Astron. Soc. Pac. 51, 223 (1939).
[CrossRef]

Anders, A.

A. Anders, “Plasma and ion sources in large area coating: a review,” Surf. Coat. Technol. 200 (5–6), 1893–1906 (2005).
[CrossRef]

Antonello, E.

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

Busonero, D.

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

Christie, W. H.

W. H. Christie and D. O. Hendrix, “The Schmidt principle in optical design,” Publ. Astron. Soc. Pac. 51, 223 (1939).
[CrossRef]

Conconi, P.

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

Crosta, M. T.

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

De Vany, A. S.

Gai, M.

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

Ghigo, M.

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002).

Hendrix, D. O.

W. H. Christie and D. O. Hendrix, “The Schmidt principle in optical design,” Publ. Astron. Soc. Pac. 51, 223 (1939).
[CrossRef]

Larson, W. J.

J. R. Wertz and W. J. Larson, Space Mission Analysis and Design (Kluwer Academic, 1999).

Lattanzi, M. G.

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

Pareschi, G.

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

Poletto, L.

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

Potter, K. S.

J. H. Simmons and K. S. Potter, Optical Materials(Academic, 2000).

Riva, A.

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

Sala, M.

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

Schroeder, D. J.

D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000).

Simmons, J. H.

J. H. Simmons and K. S. Potter, Optical Materials(Academic, 2000).

Vecchiato, A.

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

Wertz, J. R.

J. R. Wertz and W. J. Larson, Space Mission Analysis and Design (Kluwer Academic, 1999).

Wilson, R. N.

R. N. Wilson, Reflecting Telescope Optics I (Springer, 2004).

Appl. Opt. (1)

Proc. SPIE (2)

M. Ghigo, P. Conconi, M. Sala, E. Antonello, G. Pareschi, and L. Poletto, “Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters,” Proc. SPIE 5488, 475–480 (2004).
[CrossRef]

A. Riva, D. Busonero, M. Gai, M. T. Crosta, A. Vecchiato, and M. G. Lattanzi, “LEGOLAS: localizing evidence of gravitational waves by observations of light source astrometric signature,” Proc. SPIE 7731, 77311T (2010).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

W. H. Christie and D. O. Hendrix, “The Schmidt principle in optical design,” Publ. Astron. Soc. Pac. 51, 223 (1939).
[CrossRef]

Surf. Coat. Technol. (1)

A. Anders, “Plasma and ion sources in large area coating: a review,” Surf. Coat. Technol. 200 (5–6), 1893–1906 (2005).
[CrossRef]

Other (8)

J. H. Simmons and K. S. Potter, Optical Materials(Academic, 2000).

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

J. R. Wertz and W. J. Larson, Space Mission Analysis and Design (Kluwer Academic, 1999).

Schott AG, http://www.us.schott.com/advanced_optics.

E. Hecht, Optics (Addison Wesley, 2002).

Ohara Corporation, http://www.oharacorp.com.

R. N. Wilson, Reflecting Telescope Optics I (Springer, 2004).

D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Principle of the proposed solid telescope. A is the entrance aperture; R1, R2, R3, and R4 are the reflections over the two optical surfaces S1 and S2; and E is the exit zone.

Fig. 2
Fig. 2

Aperture of the first surface. Central part is reflective.

Fig. 3
Fig. 3

Data sheet of the basic parameters for the EX1.0 version of the solid telescope.

Fig. 4
Fig. 4

Raytrace of the EX1.0 version of the solid telescope.

Fig. 5
Fig. 5

Spot of the EX1.0 version of the solid telescope. Fields are 0, 2.5, and 5 arc min .

Fig. 6
Fig. 6

PSF of the EX1.0 version of the solid telescope.

Fig. 7
Fig. 7

EX1.0 PSF variation due to thermal variation.

Fig. 8
Fig. 8

Raytrace of the EX1.1 version of the solid telescope.

Fig. 9
Fig. 9

Spot of the EX1.1 version of the solid telescope. Fields are 0, 2.5, and 5 arc min .

Fig. 10
Fig. 10

Chromatic shift of the EX1.1 version of the solid telescope.

Fig. 11
Fig. 11

Raytrace of the EX1.2 version of the solid telescope.

Fig. 12
Fig. 12

Data sheet of the basic parameters for the EX1.2 version of the solid telescope.

Fig. 13
Fig. 13

Spot of the EX1.2 version of the solid telescope. Fields are 0, 1, and 2 ° .

Fig. 14
Fig. 14

Image of a field ( 30 arc min size) with a very bright star (Capella). The pollution derived by the spider effect is clearly visible (Image courtesy of the DSS archive).

Fig. 15
Fig. 15

Schematic evaluation of the stray light contribution to the EX1.0 version of the solid telescope.

Fig. 16
Fig. 16

Raytrace of the EX1.3 version of the solid telescope.

Fig. 17
Fig. 17

Data sheet of the basic parameters for the EX1.3 version of the solid telescope.

Fig. 18
Fig. 18

Spot of the EX1.3 version of the solid telescope. Fields are 0, 2.5, and 5 arc min .

Fig. 19
Fig. 19

Aperture of the first surface in the concentric rings configuration.

Fig. 20
Fig. 20

Raytrace scheme of the adapter.

Tables (5)

Tables Icon

Table 1 Comparison Between a Full-Aperture Telescope and a Solid Obscured One (EX1.0 Exercise)

Tables Icon

Table 2 Evaluation of the Focal Position Shift for Some Common Glasses with Respect to the Entrance Aperture Position Due to 20 ° C Thermal Drop (All Values are Expressed in μm )

Tables Icon

Table 3 Comparison of Loss of Efficiency of Solid Telescope Studied Due to the Increasing Numbers of Internal Passages Between S1 and S2

Tables Icon

Table 4 Summary of Main Features for Some Exercises of the Paper

Tables Icon

Table 5 Evaluation of the Ring Contribution to the Entrance Aperture with the Increasing of Rings (Values are Percentage of Area)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

log τ 1 i / log τ 2 i = d 1 / d 2 ,
Δ V V = α V Δ T ,

Metrics