Abstract

Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new IR facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA’s Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-IR through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Woolf and E. P. Ney, “Circumstellar infrared emission from cool stars,” Astrophys. J. 155, L181–L184 (1969).
    [CrossRef]
  2. R. Maas, E. Ney, and N. Woolf, “The 10-micron emission peak of comet Bennett 1969i,” Astrophys. J. 160, L101–L104 (1970).
    [CrossRef]
  3. E. van Dishoeck, “ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks,” Annu. Rev. Astron. Astrophys. 42, 119–167 (2004).
    [CrossRef]
  4. F. Molster, L. Waters, and A. Tielens, “Crystalline silicate dust around evolved stars. II. The crystalline silicate complexes,” Astron. Astrophys. 382, 222–240 (2002).
    [CrossRef]
  5. N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
    [CrossRef]
  6. T. Henning and H. Mutschke, “Low temperature infrared properties of cosmic dust analogues,” Astron. Astrophys. 327, 743–754 (1997).
  7. C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
    [CrossRef]
  8. S. L. Hallenbeck, J. A. Nuth III, and R. Nelson, “Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral,” Astrophys. J. 535, 247–255 (2000).
    [CrossRef]
  9. K. L. Day, “Temperature dependence of mid-infrared silicate absorption,” Astrophys. J. 203, L99 (1976).
    [CrossRef]
  10. A. Zaikowsky, R. Knacke, and C. Porco, “On the presence of phyllosilicate minerals in the interstellar grains,” Astrophys. Space Sci. 35, 97–115 (1975).
    [CrossRef]
  11. H. Chihara, C. Koike, and A. Tsuchiyama, “Low-temperature optical properties of silicate particles in the far-infrared region,” Publ Astron. Soc. Jpn. 53, 243–250 (2001).
  12. T. Henning and H. Mutschke, “Optical properties of cosmic dust analogs: a review,” J. Nanophoton. 4, 041580 (2010).
    [CrossRef]
  13. A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
    [CrossRef]
  14. F. J. M. Rietmeijer, J. A. Nuth, and J. M. Karner, “Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust,” Astrophys. J. 527, 395–404(1999).
    [CrossRef]
  15. S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
    [CrossRef]
  16. R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
    [CrossRef]
  17. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981).
    [CrossRef] [PubMed]
  18. E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
    [CrossRef]
  19. J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas. 41, 646–652(1992).
    [CrossRef]
  20. G. Kristensson, S. Rikte, and A. Sihvola, “Mixing formulas in the time domain,” J. Opt. Soc. Am. A 15, 1411–1422(1998).
    [CrossRef]
  21. E. Palik, Handbook of Optical Constants of Solids(Elsevier, 1998).
  22. G. Hass and C. Salzberg, “Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns,” J. Opt. Soc. Am. 44, 181–183 (1954).
    [CrossRef]
  23. R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

2010

T. Henning and H. Mutschke, “Optical properties of cosmic dust analogs: a review,” J. Nanophoton. 4, 041580 (2010).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

2009

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

2008

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

2005

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

2004

E. van Dishoeck, “ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks,” Annu. Rev. Astron. Astrophys. 42, 119–167 (2004).
[CrossRef]

2003

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

2002

F. Molster, L. Waters, and A. Tielens, “Crystalline silicate dust around evolved stars. II. The crystalline silicate complexes,” Astron. Astrophys. 382, 222–240 (2002).
[CrossRef]

2001

H. Chihara, C. Koike, and A. Tsuchiyama, “Low-temperature optical properties of silicate particles in the far-infrared region,” Publ Astron. Soc. Jpn. 53, 243–250 (2001).

2000

S. L. Hallenbeck, J. A. Nuth III, and R. Nelson, “Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral,” Astrophys. J. 535, 247–255 (2000).
[CrossRef]

1999

F. J. M. Rietmeijer, J. A. Nuth, and J. M. Karner, “Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust,” Astrophys. J. 527, 395–404(1999).
[CrossRef]

1998

1997

T. Henning and H. Mutschke, “Low temperature infrared properties of cosmic dust analogues,” Astron. Astrophys. 327, 743–754 (1997).

1992

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas. 41, 646–652(1992).
[CrossRef]

1981

1976

K. L. Day, “Temperature dependence of mid-infrared silicate absorption,” Astrophys. J. 203, L99 (1976).
[CrossRef]

1975

A. Zaikowsky, R. Knacke, and C. Porco, “On the presence of phyllosilicate minerals in the interstellar grains,” Astrophys. Space Sci. 35, 97–115 (1975).
[CrossRef]

1970

R. Maas, E. Ney, and N. Woolf, “The 10-micron emission peak of comet Bennett 1969i,” Astrophys. J. 160, L101–L104 (1970).
[CrossRef]

1969

N. J. Woolf and E. P. Ney, “Circumstellar infrared emission from cool stars,” Astrophys. J. 155, L181–L184 (1969).
[CrossRef]

1954

Baker-Jarvis, J.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas. 41, 646–652(1992).
[CrossRef]

Benford, D.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Bernard, J.-P.

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

Blum, J.

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

Boudet, N.

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

Cataldo, G.

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Chihara, H.

H. Chihara, C. Koike, and A. Tsuchiyama, “Low-temperature optical properties of silicate particles in the far-infrared region,” Publ Astron. Soc. Jpn. 53, 243–250 (2001).

Day, K. L.

K. L. Day, “Temperature dependence of mid-infrared silicate absorption,” Astrophys. J. 203, L99 (1976).
[CrossRef]

Domich, P. D.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas. 41, 646–652(1992).
[CrossRef]

Dwek, E.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

Ferguson, J.

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

Fixsen, D. J.

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

Geyer, R. G.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas. 41, 646–652(1992).
[CrossRef]

Granqvist, C. G.

Hallenbeck, S. L.

S. L. Hallenbeck, J. A. Nuth III, and R. Nelson, “Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral,” Astrophys. J. 535, 247–255 (2000).
[CrossRef]

Hass, G.

Henning, T.

T. Henning and H. Mutschke, “Optical properties of cosmic dust analogs: a review,” J. Nanophoton. 4, 041580 (2010).
[CrossRef]

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

T. Henning and H. Mutschke, “Low temperature infrared properties of cosmic dust analogues,” Astron. Astrophys. 327, 743–754 (1997).

Henry, R.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

Hunderi, O.

Jäger, C.

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

Kaito, C.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Kamitsuji, K.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Karner, J. M.

F. J. M. Rietmeijer, J. A. Nuth, and J. M. Karner, “Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust,” Astrophys. J. 527, 395–404(1999).
[CrossRef]

Kido, O.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Kimura, Y.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Kinzer, R. E.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Knacke, R.

A. Zaikowsky, R. Knacke, and C. Porco, “On the presence of phyllosilicate minerals in the interstellar grains,” Astrophys. Space Sci. 35, 97–115 (1975).
[CrossRef]

Kogut, A.

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

Koike, C.

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

H. Chihara, C. Koike, and A. Tsuchiyama, “Low-temperature optical properties of silicate particles in the far-infrared region,” Publ Astron. Soc. Jpn. 53, 243–250 (2001).

Kristensson, G.

Limon, M.

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

Maas, R.

R. Maas, E. Ney, and N. Woolf, “The 10-micron emission peak of comet Bennett 1969i,” Astrophys. J. 160, L101–L104 (1970).
[CrossRef]

Meny, C.

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

Mirel, P.

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

Molster, F.

F. Molster, L. Waters, and A. Tielens, “Crystalline silicate dust around evolved stars. II. The crystalline silicate complexes,” Astron. Astrophys. 382, 222–240 (2002).
[CrossRef]

Mutschke, H.

T. Henning and H. Mutschke, “Optical properties of cosmic dust analogs: a review,” J. Nanophoton. 4, 041580 (2010).
[CrossRef]

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

T. Henning and H. Mutschke, “Low temperature infrared properties of cosmic dust analogues,” Astron. Astrophys. 327, 743–754 (1997).

Nakada, T.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Nayral, C.

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

Nelson, R.

S. L. Hallenbeck, J. A. Nuth III, and R. Nelson, “Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral,” Astrophys. J. 535, 247–255 (2000).
[CrossRef]

Ney, E.

R. Maas, E. Ney, and N. Woolf, “The 10-micron emission peak of comet Bennett 1969i,” Astrophys. J. 160, L101–L104 (1970).
[CrossRef]

Ney, E. P.

N. J. Woolf and E. P. Ney, “Circumstellar infrared emission from cool stars,” Astrophys. J. 155, L181–L184 (1969).
[CrossRef]

Niklasson, G. A.

Nuth, J.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Nuth, J. A.

S. L. Hallenbeck, J. A. Nuth III, and R. Nelson, “Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral,” Astrophys. J. 535, 247–255 (2000).
[CrossRef]

F. J. M. Rietmeijer, J. A. Nuth, and J. M. Karner, “Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust,” Astrophys. J. 527, 395–404(1999).
[CrossRef]

Ojima, Y.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids(Elsevier, 1998).

Porco, C.

A. Zaikowsky, R. Knacke, and C. Porco, “On the presence of phyllosilicate minerals in the interstellar grains,” Astrophys. Space Sci. 35, 97–115 (1975).
[CrossRef]

Posch, Th.

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

Rietmeijer, F. J. M.

F. J. M. Rietmeijer, J. A. Nuth, and J. M. Karner, “Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust,” Astrophys. J. 527, 395–404(1999).
[CrossRef]

Rikte, S.

Rinehart, S.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Saito, Y.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Salzberg, C.

Sato, T.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Sihvola, A.

Silverberg, R.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Suzuki, H.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Tamanai, A.

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

Tielens, A.

F. Molster, L. Waters, and A. Tielens, “Crystalline silicate dust around evolved stars. II. The crystalline silicate complexes,” Astron. Astrophys. 382, 222–240 (2002).
[CrossRef]

Tsuchiyama, A.

H. Chihara, C. Koike, and A. Tsuchiyama, “Low-temperature optical properties of silicate particles in the far-infrared region,” Publ Astron. Soc. Jpn. 53, 243–250 (2001).

van Dishoeck, E.

E. van Dishoeck, “ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks,” Annu. Rev. Astron. Astrophys. 42, 119–167 (2004).
[CrossRef]

Waters, L.

F. Molster, L. Waters, and A. Tielens, “Crystalline silicate dust around evolved stars. II. The crystalline silicate complexes,” Astron. Astrophys. 382, 222–240 (2002).
[CrossRef]

Wheeler, C.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

Wollack, E.

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Wollack, E. J.

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

Woolf, N.

R. Maas, E. Ney, and N. Woolf, “The 10-micron emission peak of comet Bennett 1969i,” Astrophys. J. 160, L101–L104 (1970).
[CrossRef]

Woolf, N. J.

N. J. Woolf and E. P. Ney, “Circumstellar infrared emission from cool stars,” Astrophys. J. 155, L181–L184 (1969).
[CrossRef]

Zaikowsky, A.

A. Zaikowsky, R. Knacke, and C. Porco, “On the presence of phyllosilicate minerals in the interstellar grains,” Astrophys. Space Sci. 35, 97–115 (1975).
[CrossRef]

Annu. Rev. Astron. Astrophys.

E. van Dishoeck, “ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks,” Annu. Rev. Astron. Astrophys. 42, 119–167 (2004).
[CrossRef]

Appl. Opt.

Astron. Astrophys.

T. Henning and H. Mutschke, “Low temperature infrared properties of cosmic dust analogues,” Astron. Astrophys. 327, 743–754 (1997).

A. Tamanai, H. Mutschke, J. Blum, Th. Posch, C. Koike, and J. Ferguson, “Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars,” Astron. Astrophys. 501, 251–267 (2009).
[CrossRef]

F. Molster, L. Waters, and A. Tielens, “Crystalline silicate dust around evolved stars. II. The crystalline silicate complexes,” Astron. Astrophys. 382, 222–240 (2002).
[CrossRef]

Astrophys. J.

N. Boudet, H. Mutschke, C. Nayral, C. Jäger, J.-P. Bernard, T. Henning, and C. Meny, “Temperature dependence of the submillimeter absorption coefficient of amorphous silicate grains,” Astrophys. J. 633, 272–281 (2005).
[CrossRef]

N. J. Woolf and E. P. Ney, “Circumstellar infrared emission from cool stars,” Astrophys. J. 155, L181–L184 (1969).
[CrossRef]

R. Maas, E. Ney, and N. Woolf, “The 10-micron emission peak of comet Bennett 1969i,” Astrophys. J. 160, L101–L104 (1970).
[CrossRef]

S. L. Hallenbeck, J. A. Nuth III, and R. Nelson, “Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral,” Astrophys. J. 535, 247–255 (2000).
[CrossRef]

K. L. Day, “Temperature dependence of mid-infrared silicate absorption,” Astrophys. J. 203, L99 (1976).
[CrossRef]

F. J. M. Rietmeijer, J. A. Nuth, and J. M. Karner, “Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust,” Astrophys. J. 527, 395–404(1999).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, G. Cataldo, J. Nuth, R. Silverberg, and E. Wollack, “Measured dielectric constants for iron-rich silicate smokes in the far-infrared,” Astrophys. J. (to be published).

Astrophys. Space Sci.

A. Zaikowsky, R. Knacke, and C. Porco, “On the presence of phyllosilicate minerals in the interstellar grains,” Astrophys. Space Sci. 35, 97–115 (1975).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas. 41, 646–652(1992).
[CrossRef]

Int. J. Infrared Millim. Waves

E. J. Wollack, D. J. Fixsen, R. Henry, A. Kogut, M. Limon, and P. Mirel, “Electromagnetic and thermal properties of a conductively loaded epoxy,” Int. J. Infrared Millim. Waves 29, 51–61(2008).
[CrossRef]

J. Nanophoton.

T. Henning and H. Mutschke, “Optical properties of cosmic dust analogs: a review,” J. Nanophoton. 4, 041580 (2010).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Meteorit. Planet. Sci.

C. Kaito, Y. Ojima, K. Kamitsuji, O. Kido, Y. Kimura, H. Suzuki, T. Sato, T. Nakada, Y. Saito, and C. Koike, “Demonstration of crystalline forsterite grain formation due to coalescence growth of Mg and SiO smoke particles,” Meteorit. Planet. Sci. 38, 49–57 (2003).
[CrossRef]

Proc. SPIE

S. Rinehart, D. Benford, E. Dwek, R. Henry, R. Silverberg, and E. Wollack, “Optical properties of astronomical silicates,” Proc. SPIE 7014, 70142G (2008).
[CrossRef]

R. E. Kinzer Jr., S. Rinehart, D. Benford, E. Dwek, R. Henry, J. Nuth, R. Silverberg, C. Wheeler, and E. Wollack, “Optical properties of astronomical silicates with infrared techniques,” Proc. SPIE 7741, 774128 (2010).
[CrossRef]

Publ Astron. Soc. Jpn.

H. Chihara, C. Koike, and A. Tsuchiyama, “Low-temperature optical properties of silicate particles in the far-infrared region,” Publ Astron. Soc. Jpn. 53, 243–250 (2001).

Other

E. Palik, Handbook of Optical Constants of Solids(Elsevier, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Many sample preparations are needed to cover the wide range in wavelengths. (a) Three bulk sample holders ( 8 mm , disassembled on the left, 2 mm on edge in the middle, and 4 mm at right), (b) KBr and polyethylene pellets used at short wavelengths, (c) bulk samples used for reflectivity measurements; a sparse, optically thin sample is on the left, with an optically thick sample on the right.

Fig. 2
Fig. 2

We have obtained data for SiO x , covering a large spectral range by using our multiple sample preparations at multiple temperatures. By measuring a sample material with known properties, we are able to verify that each of our experiments is operating as expected. Here, we show SiO x transmission data from FTS measurements, taken at room temperature ( 300 K ). The four curves are for a 4 mm bulk SiO x sample, two different densities of sample in a polyethylene (PE) matrix, and a sample prepared in a KBr matrix. Each sample preparation has a different optical depth; this allows us to obtain transmission values in the range of 0.2 to 0.8 as needed to determine the complex dielectric constant to high accuracy.

Fig. 3
Fig. 3

SiO x , unlike many iron- and magnesium-rich condensates, does not show significant changes in spectrum with temperature. However, as shown here, there is a shift in the continuum transmission at long wavelengths. This demonstrates the need for measurements at different temperatures, even in this instance where the difference with temperature is relatively small. The OPASI-T program is designed to provide temperature resolution needed to probe temperature-dependent changes in the observed spectra. The two sets of curves shown here are for two different densities ( 15 mg with a filling fraction of 0.0056 and 30 mg with a filling fraction of 0.012) of sample material embedded in a polyethylene matrix; the same temperature behavior of the spectrum is seen in both samples.

Fig. 4
Fig. 4

From the transmission data shown in Fig. 3, we have derived the n and k values for our SiO x mixture embedded in polyethylene matrix (the results shown here are for the 30 mg sample with a filling fraction of 0.0119). The calculated values show clear differences between room temperature and 5 K .

Fig. 5
Fig. 5

The reflectometer is designed to provide the complementary reflection and emission data needed to uniquely determine the complex dielectric constant for the sample material. On the right is a illustration of the design of the reflectometer; the hardware itself can be seen at left.

Fig. 6
Fig. 6

Our IR reflectometer allows us to obtain high-quality scattering data for optically thick target samples, while also providing the ability to measure absorptivity of optically thin samples. Here we show measurements taken with our reflectometer at 6 K for an optically thin SiO x sample on an aluminum disk, along with the calibration measurements from a highly reflective aluminum sample and a “black,” a corrugated nonreflective sample. The data shown is for a single run; noise within the data leads to localized values of the reflection coefficient that are greater than 1. Averages of multiple runs provide a measured reflection of 0.99 .

Fig. 7
Fig. 7

The IR reflectometer cannot yet obtain good quality data short of 15 μm , so we complement the wavelength coverage by using the room temperature integrating sphere on the Bruker IFS 125 hr in the near-IR and mid-IR. The data shown here are for the same SiO x on Al sample as shown in Fig. 6.

Fig. 8
Fig. 8

Using waveguide resonators (such as shown at bottom left) packed with an iron-rich sample, we derive the complex dielectric constant at submillimeter and millimeter wavelengths. The main panel shows measurements of the scattering matrix elements for material loosely packed into the waveguide with a filling fraction of 0.982. Models fit the data well; these models, combined with the knowledge of the filling factor of the material, allow accurate derivation of the dielectric constants.

Fig. 9
Fig. 9

Based upon the measured transmission and reflection data from the OPASI-T experiments, we are able to calculate both components of the complex dielectric constant for our sample embedded in KBr (with a filling fraction of 9.8 × 10 4 ). The results are consistent with previous measurements of the individual sample constituents; the KBr and SiO data shown above are from [21]. The results shown here (the SiO + KBr curve) are derived from room temperature transmission data.

Metrics