Abstract

We present a description of a 1.5mm long, vertically aligned carbon nanotube array (VANTA) on a thermopile and separately on a pyroelectric detector. Three VANTA samples, having average lengths of 40μm, 150μm, and 1.5mm were evaluated with respect to reflectance at a laser wavelength of 394μm (760GHz), and we found that the reflectance decreases substantially with increasing tube length, ranging from 0.38 to 0.23 to 0.01, respectively. The responsivity of the thermopile by electrical heating (98.4mA/W) was equal to that by optical heating (98.0mA/W) within the uncertainty of the measurement. We analyzed the frequency response and temporal response and found a thermal decay period of 500ms, which is consistent with the specific heat of comparable VANTAs in the literature. The extremely low (0.01) reflectance of the 1.5mm VANTAs and the fact that the array is readily transferable to the detector’s surface is, to our knowledge, unprecedented.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
    [CrossRef] [PubMed]
  2. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
    [CrossRef] [PubMed]
  3. D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985).
    [CrossRef]
  4. I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
    [CrossRef]
  5. M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
    [CrossRef]
  6. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
    [CrossRef]
  7. E. Theocharous, C. Engtrakul, A. C. Dillon, and J. Lehman, “Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating,” Appl. Opt. 47, 3999–4003(2008).
    [CrossRef] [PubMed]
  8. H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
    [CrossRef]
  9. L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
    [CrossRef]
  10. M. A. Ordal, R. J. Bell, J. R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988).
    [CrossRef] [PubMed]
  11. E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).
  12. I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.
  13. H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
    [CrossRef] [PubMed]
  14. S. M. Smith, “Specular reflectance of optical-black coatings in the far infrared,” Appl. Opt. 23, 2311–2326 (1984).
    [CrossRef] [PubMed]
  15. D. J. Advena, V. T. Bly, and J. T. Cox, “Deposition and characterization of far-infrared absorbing gold black films,” Appl. Opt. 32, 1136–1144 (1993).
    [CrossRef] [PubMed]
  16. D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
    [CrossRef]
  17. J. R. J. Phelan and A. R. Cook, “Electrically calibrated pyroelectric optical-radiation detector,” Appl. Opt. 12, 2494–2500(1973).
    [CrossRef] [PubMed]
  18. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
    [CrossRef]
  19. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Nanotubes (Imperial College Press, 1998).
    [CrossRef]
  20. K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
    [CrossRef]

2011

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
[CrossRef]

2010

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

2009

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
[CrossRef]

2008

2007

L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
[CrossRef]

2006

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

2002

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

2000

I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.

1998

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Nanotubes (Imperial College Press, 1998).
[CrossRef]

1997

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

1993

1988

1985

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985).
[CrossRef]

1984

1977

H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
[CrossRef]

1973

Advena, D. J.

Ahn, J.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Ajayan, P. M.

L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
[CrossRef]

Akoshima, M.

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

Alexander, J. R. W.

Assender, H.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Baba, T.

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

Bell, R. J.

Betts, D. B.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985).
[CrossRef]

Bliznyuk, V.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Bly, V. T.

Chen, G.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Ci, L.

L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
[CrossRef]

Clarke, F. J. J.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985).
[CrossRef]

Cook, A. R.

Cox, J. T.

Cox, L. J.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985).
[CrossRef]

Cromer, C. L.

K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
[CrossRef]

I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.

Crowe, D. G.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

Cui, H.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

Dillon, A. C.

K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
[CrossRef]

E. Theocharous, C. Engtrakul, A. C. Dillon, and J. Lehman, “Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating,” Appl. Opt. 47, 3999–4003(2008).
[CrossRef] [PubMed]

Dresselhaus, G.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Nanotubes (Imperial College Press, 1998).
[CrossRef]

Dresselhaus, M. S.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Nanotubes (Imperial College Press, 1998).
[CrossRef]

Engtrakul, C.

Eres, G.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Futaba, D. N.

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

Geohegan, D. B.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Hanssen, L.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

Hata, K.

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Howe, J.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Hurst, K. E.

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Ivanov, I.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Jensen, C.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

Jin, R.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Larkin, J. A.

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985).
[CrossRef]

Lehman, J.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

E. Theocharous, C. Engtrakul, A. C. Dillon, and J. Lehman, “Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating,” Appl. Opt. 47, 3999–4003(2008).
[CrossRef] [PubMed]

Lehman, J. H.

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
[CrossRef]

K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
[CrossRef]

Li, J. Q.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Li, X.

L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
[CrossRef]

I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.

Livigni, D. J.

I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.

Mahajan, R. L.

K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
[CrossRef]

Manikoth, S. M.

L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
[CrossRef]

Mansfield, E.

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
[CrossRef]

Meunier, V.

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

Newquist, L. A.

Ordal, M. A.

Pan, Z.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

Phelan, J. R. J.

Philipp, H. R.

H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
[CrossRef]

Pitarke, J. M.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

Porfyrakis, K.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Puretzky, A.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Querry, M. R.

Ramadurai, K.

K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
[CrossRef]

Saito, R.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Nanotubes (Imperial College Press, 1998).
[CrossRef]

Sanders, A.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

Scott, T. R.

I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.

Smith, S. M.

Terrones, M.

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
[CrossRef]

Theocharous, E.

Vajtai, R.

L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
[CrossRef]

Vayshenker, I.

I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.

Wang, H.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Wang, Q.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Wang, S. G.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Wilthan, B.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

Yang, D. J.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Yoon, S. F.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

Zeng, J.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

Zhang, Q.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Zhou, Q.

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Adv. Mater.

L. Ci, S. M. Manikoth, X. Li, R. Vajtai, and P. M. Ajayan, “Ultrathick freestanding aligned carbon nanotube films,” Adv. Mater. 19, 3300–3303 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D. B. Geohegan, “Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays,” Appl. Phys. Lett. 89, 223110 (2006).
[CrossRef]

Carbon

J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon 49, 2581–2602 (2011).
[CrossRef]

J. Appl. Phys.

K. Ramadurai, C. L. Cromer, A. C. Dillon, R. L. Mahajan, and J. H. Lehman, “Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance,” J. Appl. Phys. 105, 093106 (2009).
[CrossRef]

J. Phys. E

D. B. Betts, F. J. J. Clarke, L. J. Cox, and J. A. Larkin, “Infrared reflection properties of five types of black coating for radiometric detectors,” J. Phys. E 18, 689–696 (1985).
[CrossRef]

Jpn. J. Appl. Phys.

M. Akoshima, K. Hata, D. N. Futaba, K. Mizuno, T. Baba, and M. Yumura, “Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method,” Jpn. J. Appl. Phys. 48, 05EC07 (2009).
[CrossRef]

Nano Lett.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, “Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate,” Nano Lett. 10, 3261–3266 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

H. R. Philipp, “Infrared optical properties of graphite,” Phys. Rev. B 16, 2896–2900 (1977).
[CrossRef]

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, “Thermal conductivity of multiwalled carbon nanotubes,” Phys. Rev. B 66, 165440 (2002).
[CrossRef]

Phys. Rev. Lett.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. USA

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).
[CrossRef] [PubMed]

Science

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297, 973–976 (2002).
[CrossRef] [PubMed]

Other

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Nanotubes (Imperial College Press, 1998).
[CrossRef]

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

I. Vayshenker, X. Li, D. J. Livigni, T. R. Scott, and C. L. Cromer, “Optical fiber power meter calibrations at NIST,” N. M. Services, ed. (National Institute of Standards and Technology (NIST), 2000), p. 36.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-sectional view of as-prepared 1.5 mm long VANTA. (Above) optical image, (below) SEM image of a representative side-view section of the density and shape. (SEM credit: Dr. Wei Zhang, FirstNano). The silicon substrate is 0.38 mm thick.

Fig. 2
Fig. 2

Schematic of the thermopile assembly.

Fig. 3
Fig. 3

Schematic of the pyroelectric detector assembly.

Fig. 4
Fig. 4

Frequency response of VANTA area and bare nickel electrode and (inset) rise time of VANTA area.

Tables (2)

Tables Icon

Table 1 Summary of Reflectance-Measurement Results at 394 μm Wavelength a

Tables Icon

Table 2 Summary of Reflectance-Measurement Results near 400 μm Wavelength for Comparable Black Coatings

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε p = ε ( ω ) + Δ + f ( ε ( ω ) Δ ) ε ( ω ) + Δ f ( ε ( ω ) Δ ) ,
f = ( π r 2 ) n tubes Area VANTA ,
Δ = ε ( ω ) ε ( ω ) .

Metrics