Abstract

Doppler global velocimetry (DGV) is considered to be a useful optical measurement tool for acquiring flow velocity fields. Often near-wall measurements are required, which is still challenging due to errors resulting from background scattering and multiple-particle scattering. Since the magnitudes of both errors are unknown so far, they are investigated by scattering simulations and experiments. Multiple-particle scattering mainly causes a stochastic error, which can be reduced by averaging. Contrary to this, background scattering results in a relative systematic error, which is directly proportional to the ratio of the background scattered light power to the total scattered light power. After applying a correction method and optimizing the measurement arrangement, a subsonic flat plate boundary layer was successfully measured achieving a minimum wall distance of 100μm with a maximum relative error of 6%. The investigations reveal the current capabilities and perspectives of DGV for near-wall measurements.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-G. Maas, A. W. Gruen, and D. A. Papantoniou, “Particle tracking velocimetry in three-dimensional flows: Part A,” Exp. Fluids 15 (2), 133–146 (1993).
    [CrossRef]
  2. M. Raffel, C. E. Willert, S. T. Werely, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 2007).
  3. M. P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Exp. Fluids 15, 295–307 (1993).
    [CrossRef]
  4. J. Westerweel, “Theoretical analysis of the measurement precision in particle image velocimetry,” Exp. Fluids Suppl. 29, S3–S12 (2000).
    [CrossRef]
  5. M. Kegalj and H.-P. Schiffer, “Endoscopic PIV measurements in a low pressure turbine rig,” Exp. Fluids 47, 689–705 (2009).
    [CrossRef]
  6. M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
    [CrossRef]
  7. J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostic tool,” Meas. Sci. Technol. 6, 769–783 (1995).
    [CrossRef]
  8. A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
    [CrossRef]
  9. T. O. H. Charrett and R. P. Tatam, “Single camera three component planar velocity measurements using two-frequency planar Doppler velocimetry (2ν-PDV),” Meas. Sci. Technol. 17, 1194–1206 (2006).
    [CrossRef]
  10. H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
    [CrossRef]
  11. L. E. Drain, The Laser Doppler Technique (John Wiley & Sons, Chichester, 1980).
  12. D. S. Nobes, H. D. Ford, and R. P. Tatam, “Instantaneous, three-component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
    [CrossRef]
  13. C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
    [CrossRef]
  14. I. Röhle and C. E. Willert, “Extension of Doppler global velocimetry to periodic flows,” Meas. Sci. Technol. 12, 420–431(2001).
    [CrossRef]
  15. I. Röhle, R. Schodl, P. Voigt, and C. Willert, “Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components,” Meas. Sci. Technol. 11, 1023–1035 (2000).
    [CrossRef]
  16. R. L. McKenzie, “Measurement capabilities of planar Doppler velocimetry using pulsed lasers,” Appl. Opt. 35, 948–964(1996).
    [CrossRef] [PubMed]
  17. A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
    [CrossRef] [PubMed]
  18. A. Fischer, T. Pfister, and J. Czarske, “Derivation and comparison of fundamental uncertainty limits for laser-two-focus velocimetry, laser Doppler anemometry and Doppler global velocimetry,” Measurement 43, 1556–1574 (2010).
    [CrossRef]
  19. A. Fischer and J. Czarske, “Signal processing efficiency of Doppler global velocimetry with laser frequency modulation,” Optik 121, 1891–1899 (2010).
    [CrossRef]
  20. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques(Springer, 2003).
  21. F. Durst, R. Martinuzzi, J. Sender, and D. Thevenin, “LDA-measurements of mean velocity, RMS-values and higher order moments of turbulence intensity fluctuations in flow fields with strong velocity gradients,” presented at the 6th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 20–23 July, 1992, p. S5.
  22. F. Durst, J. Jovanović, and J. Sender, “LDA measurements in the near-wall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–355 (1995).
    [CrossRef]
  23. M. Fischer, J. Jovanović, and F. Durst, “Near-wall behaviour of statistical properties in turbulent flows,” Int. J. Heat Fluid Flow 21, 471–479 (2000).
    [CrossRef]
  24. J. F. Meyers, J. W. Lee, and A. A. Cavone, “Boundary layer measurements in a supersonic wind tunnel using Doppler global velocimetry,” presented at 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 5–8 July, 2010).
  25. P. Voigt, “Non-linear effects in planar scattering techniques: proof of existence, simulations and numerical corrections of extinction and multiple scattering,” presented at 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 13–16 July, 1998).
  26. R. Schodl, G. Stockhausen, C. Willert, and J. Klinner, “Komplementär-Streifen-Verfahren für die Doppler Global Velocimetry (DGV) zur Korrektur des Einflusses von Hintergrundbeleuchtung,” presented at Lasermethoden in der Strömungsmesstechnik—14. Fachtagung, Braunschweig, Germany, 5–7 September, 2006).
  27. Y. N. Dubnishchev, Y. V. Chugui, and J. Kompenhans, “Laser Doppler visualisation of the velocity field by excluding the influence of multiparticle scattering,” Quantum Electron. 39, 962–966 (2009).
    [CrossRef]
  28. The assumption of linearity is valid for small differences of the Doppler frequencies with regard to the width of the transmission curve edges of the absorption cell.
  29. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  31. A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
    [CrossRef]
  32. A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
    [CrossRef]
  33. L. Büttner and J. Czarske, “Multi-mode fibre laser Doppler anemometer (LDA) with high spatial resolution for the investigation of boundary layers,” Exp. Fluids 36, 214–216 (2004).
    [CrossRef]
  34. S. A. Arnette, M. Samimy, and G. S. Elliot, “Two-component planar Doppler velocimetry in the compressible turbulent boundary layer,” Exp. Fluids 24, 323–332 (1998).
    [CrossRef]
  35. A. Fischer, J. König, and J. Czarske, “Speckle noise influence on measuring turbulence spectra using time-resolved Doppler global velocimetry with laser frequency modulation,” Meas. Sci. Technol. 19, 125402 (2008).
    [CrossRef]

2011 (1)

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

2010 (2)

A. Fischer, T. Pfister, and J. Czarske, “Derivation and comparison of fundamental uncertainty limits for laser-two-focus velocimetry, laser Doppler anemometry and Doppler global velocimetry,” Measurement 43, 1556–1574 (2010).
[CrossRef]

A. Fischer and J. Czarske, “Signal processing efficiency of Doppler global velocimetry with laser frequency modulation,” Optik 121, 1891–1899 (2010).
[CrossRef]

2009 (4)

M. Kegalj and H.-P. Schiffer, “Endoscopic PIV measurements in a low pressure turbine rig,” Exp. Fluids 47, 689–705 (2009).
[CrossRef]

Y. N. Dubnishchev, Y. V. Chugui, and J. Kompenhans, “Laser Doppler visualisation of the velocity field by excluding the influence of multiparticle scattering,” Quantum Electron. 39, 962–966 (2009).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
[CrossRef]

2008 (2)

A. Fischer, J. König, and J. Czarske, “Speckle noise influence on measuring turbulence spectra using time-resolved Doppler global velocimetry with laser frequency modulation,” Meas. Sci. Technol. 19, 125402 (2008).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[CrossRef] [PubMed]

2007 (3)

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

M. Raffel, C. E. Willert, S. T. Werely, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 2007).

2006 (2)

T. O. H. Charrett and R. P. Tatam, “Single camera three component planar velocity measurements using two-frequency planar Doppler velocimetry (2ν-PDV),” Meas. Sci. Technol. 17, 1194–1206 (2006).
[CrossRef]

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

2004 (3)

L. Büttner and J. Czarske, “Multi-mode fibre laser Doppler anemometer (LDA) with high spatial resolution for the investigation of boundary layers,” Exp. Fluids 36, 214–216 (2004).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Instantaneous, three-component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

2003 (1)

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques(Springer, 2003).

2001 (1)

I. Röhle and C. E. Willert, “Extension of Doppler global velocimetry to periodic flows,” Meas. Sci. Technol. 12, 420–431(2001).
[CrossRef]

2000 (3)

I. Röhle, R. Schodl, P. Voigt, and C. Willert, “Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components,” Meas. Sci. Technol. 11, 1023–1035 (2000).
[CrossRef]

M. Fischer, J. Jovanović, and F. Durst, “Near-wall behaviour of statistical properties in turbulent flows,” Int. J. Heat Fluid Flow 21, 471–479 (2000).
[CrossRef]

J. Westerweel, “Theoretical analysis of the measurement precision in particle image velocimetry,” Exp. Fluids Suppl. 29, S3–S12 (2000).
[CrossRef]

1998 (1)

S. A. Arnette, M. Samimy, and G. S. Elliot, “Two-component planar Doppler velocimetry in the compressible turbulent boundary layer,” Exp. Fluids 24, 323–332 (1998).
[CrossRef]

1996 (1)

1995 (2)

J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostic tool,” Meas. Sci. Technol. 6, 769–783 (1995).
[CrossRef]

F. Durst, J. Jovanović, and J. Sender, “LDA measurements in the near-wall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–355 (1995).
[CrossRef]

1993 (2)

H.-G. Maas, A. W. Gruen, and D. A. Papantoniou, “Particle tracking velocimetry in three-dimensional flows: Part A,” Exp. Fluids 15 (2), 133–146 (1993).
[CrossRef]

M. P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Exp. Fluids 15, 295–307 (1993).
[CrossRef]

1981 (1)

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

1980 (1)

L. E. Drain, The Laser Doppler Technique (John Wiley & Sons, Chichester, 1980).

Albrecht, H.-E.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques(Springer, 2003).

Arnette, S. A.

S. A. Arnette, M. Samimy, and G. S. Elliot, “Two-component planar Doppler velocimetry in the compressible turbulent boundary layer,” Exp. Fluids 24, 323–332 (1998).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Borys, M.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques(Springer, 2003).

Büttner, L.

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[CrossRef] [PubMed]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[CrossRef]

L. Büttner and J. Czarske, “Multi-mode fibre laser Doppler anemometer (LDA) with high spatial resolution for the investigation of boundary layers,” Exp. Fluids 36, 214–216 (2004).
[CrossRef]

Cavone, A. A.

J. F. Meyers, J. W. Lee, and A. A. Cavone, “Boundary layer measurements in a supersonic wind tunnel using Doppler global velocimetry,” presented at 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 5–8 July, 2010).

Charrett, T. O. H.

T. O. H. Charrett and R. P. Tatam, “Single camera three component planar velocity measurements using two-frequency planar Doppler velocimetry (2ν-PDV),” Meas. Sci. Technol. 17, 1194–1206 (2006).
[CrossRef]

Chugui, Y. V.

Y. N. Dubnishchev, Y. V. Chugui, and J. Kompenhans, “Laser Doppler visualisation of the velocity field by excluding the influence of multiparticle scattering,” Quantum Electron. 39, 962–966 (2009).
[CrossRef]

Czarske, J.

A. Fischer, T. Pfister, and J. Czarske, “Derivation and comparison of fundamental uncertainty limits for laser-two-focus velocimetry, laser Doppler anemometry and Doppler global velocimetry,” Measurement 43, 1556–1574 (2010).
[CrossRef]

A. Fischer and J. Czarske, “Signal processing efficiency of Doppler global velocimetry with laser frequency modulation,” Optik 121, 1891–1899 (2010).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[CrossRef] [PubMed]

A. Fischer, J. König, and J. Czarske, “Speckle noise influence on measuring turbulence spectra using time-resolved Doppler global velocimetry with laser frequency modulation,” Meas. Sci. Technol. 19, 125402 (2008).
[CrossRef]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

L. Büttner and J. Czarske, “Multi-mode fibre laser Doppler anemometer (LDA) with high spatial resolution for the investigation of boundary layers,” Exp. Fluids 36, 214–216 (2004).
[CrossRef]

Damaschke, N.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques(Springer, 2003).

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (John Wiley & Sons, Chichester, 1980).

Dubnishchev, Y. N.

Y. N. Dubnishchev, Y. V. Chugui, and J. Kompenhans, “Laser Doppler visualisation of the velocity field by excluding the influence of multiparticle scattering,” Quantum Electron. 39, 962–966 (2009).
[CrossRef]

Durst, F.

F. Durst, R. Martinuzzi, J. Sender, and D. Thevenin, “LDA-measurements of mean velocity, RMS-values and higher order moments of turbulence intensity fluctuations in flow fields with strong velocity gradients,” presented at the 6th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 20–23 July, 1992, p. S5.

M. Fischer, J. Jovanović, and F. Durst, “Near-wall behaviour of statistical properties in turbulent flows,” Int. J. Heat Fluid Flow 21, 471–479 (2000).
[CrossRef]

F. Durst, J. Jovanović, and J. Sender, “LDA measurements in the near-wall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–355 (1995).
[CrossRef]

Eggert, M.

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[CrossRef] [PubMed]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

Elliot, G. S.

S. A. Arnette, M. Samimy, and G. S. Elliot, “Two-component planar Doppler velocimetry in the compressible turbulent boundary layer,” Exp. Fluids 24, 323–332 (1998).
[CrossRef]

Fischer, A.

A. Fischer and J. Czarske, “Signal processing efficiency of Doppler global velocimetry with laser frequency modulation,” Optik 121, 1891–1899 (2010).
[CrossRef]

A. Fischer, T. Pfister, and J. Czarske, “Derivation and comparison of fundamental uncertainty limits for laser-two-focus velocimetry, laser Doppler anemometry and Doppler global velocimetry,” Measurement 43, 1556–1574 (2010).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[CrossRef] [PubMed]

A. Fischer, J. König, and J. Czarske, “Speckle noise influence on measuring turbulence spectra using time-resolved Doppler global velocimetry with laser frequency modulation,” Meas. Sci. Technol. 19, 125402 (2008).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[CrossRef]

Fischer, M.

M. Fischer, J. Jovanović, and F. Durst, “Near-wall behaviour of statistical properties in turbulent flows,” Int. J. Heat Fluid Flow 21, 471–479 (2000).
[CrossRef]

Ford, H. D.

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Instantaneous, three-component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Grosche, G.

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

Gruen, A. W.

H.-G. Maas, A. W. Gruen, and D. A. Papantoniou, “Particle tracking velocimetry in three-dimensional flows: Part A,” Exp. Fluids 15 (2), 133–146 (1993).
[CrossRef]

Hassa, C.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Jarius, M.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

Jovanovic, J.

M. Fischer, J. Jovanović, and F. Durst, “Near-wall behaviour of statistical properties in turbulent flows,” Int. J. Heat Fluid Flow 21, 471–479 (2000).
[CrossRef]

F. Durst, J. Jovanović, and J. Sender, “LDA measurements in the near-wall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–355 (1995).
[CrossRef]

Kegalj, M.

M. Kegalj and H.-P. Schiffer, “Endoscopic PIV measurements in a low pressure turbine rig,” Exp. Fluids 47, 689–705 (2009).
[CrossRef]

Klinner, J.

R. Schodl, G. Stockhausen, C. Willert, and J. Klinner, “Komplementär-Streifen-Verfahren für die Doppler Global Velocimetry (DGV) zur Korrektur des Einflusses von Hintergrundbeleuchtung,” presented at Lasermethoden in der Strömungsmesstechnik—14. Fachtagung, Braunschweig, Germany, 5–7 September, 2006).

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

Kompenhans, J.

Y. N. Dubnishchev, Y. V. Chugui, and J. Kompenhans, “Laser Doppler visualisation of the velocity field by excluding the influence of multiparticle scattering,” Quantum Electron. 39, 962–966 (2009).
[CrossRef]

M. Raffel, C. E. Willert, S. T. Werely, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 2007).

König, J.

A. Fischer, J. König, and J. Czarske, “Speckle noise influence on measuring turbulence spectra using time-resolved Doppler global velocimetry with laser frequency modulation,” Meas. Sci. Technol. 19, 125402 (2008).
[CrossRef]

Lee, J. W.

J. F. Meyers, J. W. Lee, and A. A. Cavone, “Boundary layer measurements in a supersonic wind tunnel using Doppler global velocimetry,” presented at 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 5–8 July, 2010).

Maas, H.-G.

H.-G. Maas, A. W. Gruen, and D. A. Papantoniou, “Particle tracking velocimetry in three-dimensional flows: Part A,” Exp. Fluids 15 (2), 133–146 (1993).
[CrossRef]

Martinuzzi, R.

F. Durst, R. Martinuzzi, J. Sender, and D. Thevenin, “LDA-measurements of mean velocity, RMS-values and higher order moments of turbulence intensity fluctuations in flow fields with strong velocity gradients,” presented at the 6th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 20–23 July, 1992, p. S5.

McKenzie, R. L.

Meyers, J. F.

J. F. Meyers, J. W. Lee, and A. A. Cavone, “Boundary layer measurements in a supersonic wind tunnel using Doppler global velocimetry,” presented at 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 5–8 July, 2010).

J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostic tool,” Meas. Sci. Technol. 6, 769–783 (1995).
[CrossRef]

Mönig, R.

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

Müller, H.

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation,” Appl. Opt. 47, 3941–3953 (2008).
[CrossRef] [PubMed]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[CrossRef]

Müller, M. W.

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

Nobes, D. S.

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Instantaneous, three-component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Papantoniou, D. A.

H.-G. Maas, A. W. Gruen, and D. A. Papantoniou, “Particle tracking velocimetry in three-dimensional flows: Part A,” Exp. Fluids 15 (2), 133–146 (1993).
[CrossRef]

Pfister, T.

A. Fischer, T. Pfister, and J. Czarske, “Derivation and comparison of fundamental uncertainty limits for laser-two-focus velocimetry, laser Doppler anemometry and Doppler global velocimetry,” Measurement 43, 1556–1574 (2010).
[CrossRef]

Pline, A.

M. P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Exp. Fluids 15, 295–307 (1993).
[CrossRef]

Raffel, M.

M. Raffel, C. E. Willert, S. T. Werely, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 2007).

Röhle, I.

I. Röhle and C. E. Willert, “Extension of Doppler global velocimetry to periodic flows,” Meas. Sci. Technol. 12, 420–431(2001).
[CrossRef]

I. Röhle, R. Schodl, P. Voigt, and C. Willert, “Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components,” Meas. Sci. Technol. 11, 1023–1035 (2000).
[CrossRef]

Samimy, M.

S. A. Arnette, M. Samimy, and G. S. Elliot, “Two-component planar Doppler velocimetry in the compressible turbulent boundary layer,” Exp. Fluids 24, 323–332 (1998).
[CrossRef]

Schiffer, H.-P.

M. Kegalj and H.-P. Schiffer, “Endoscopic PIV measurements in a low pressure turbine rig,” Exp. Fluids 47, 689–705 (2009).
[CrossRef]

Schnell, R.

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

Schodl, R.

R. Schodl, G. Stockhausen, C. Willert, and J. Klinner, “Komplementär-Streifen-Verfahren für die Doppler Global Velocimetry (DGV) zur Korrektur des Einflusses von Hintergrundbeleuchtung,” presented at Lasermethoden in der Strömungsmesstechnik—14. Fachtagung, Braunschweig, Germany, 5–7 September, 2006).

I. Röhle, R. Schodl, P. Voigt, and C. Willert, “Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components,” Meas. Sci. Technol. 11, 1023–1035 (2000).
[CrossRef]

Sender, J.

F. Durst, R. Martinuzzi, J. Sender, and D. Thevenin, “LDA-measurements of mean velocity, RMS-values and higher order moments of turbulence intensity fluctuations in flow fields with strong velocity gradients,” presented at the 6th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 20–23 July, 1992, p. S5.

F. Durst, J. Jovanović, and J. Sender, “LDA measurements in the near-wall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–355 (1995).
[CrossRef]

Stockhausen, G.

R. Schodl, G. Stockhausen, C. Willert, and J. Klinner, “Komplementär-Streifen-Verfahren für die Doppler Global Velocimetry (DGV) zur Korrektur des Einflusses von Hintergrundbeleuchtung,” presented at Lasermethoden in der Strömungsmesstechnik—14. Fachtagung, Braunschweig, Germany, 5–7 September, 2006).

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

Tatam, R. P.

T. O. H. Charrett and R. P. Tatam, “Single camera three component planar velocity measurements using two-frequency planar Doppler velocimetry (2ν-PDV),” Meas. Sci. Technol. 17, 1194–1206 (2006).
[CrossRef]

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Instantaneous, three-component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Thevenin, D.

F. Durst, R. Martinuzzi, J. Sender, and D. Thevenin, “LDA-measurements of mean velocity, RMS-values and higher order moments of turbulence intensity fluctuations in flow fields with strong velocity gradients,” presented at the 6th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 20–23 July, 1992, p. S5.

Tropea, C.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques(Springer, 2003).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

Voges, M.

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

Voigt, P.

I. Röhle, R. Schodl, P. Voigt, and C. Willert, “Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components,” Meas. Sci. Technol. 11, 1023–1035 (2000).
[CrossRef]

P. Voigt, “Non-linear effects in planar scattering techniques: proof of existence, simulations and numerical corrections of extinction and multiple scattering,” presented at 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 13–16 July, 1998).

Werely, S. T.

M. Raffel, C. E. Willert, S. T. Werely, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 2007).

Wernet, M. P.

M. P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Exp. Fluids 15, 295–307 (1993).
[CrossRef]

Westerweel, J.

J. Westerweel, “Theoretical analysis of the measurement precision in particle image velocimetry,” Exp. Fluids Suppl. 29, S3–S12 (2000).
[CrossRef]

Willert, C.

R. Schodl, G. Stockhausen, C. Willert, and J. Klinner, “Komplementär-Streifen-Verfahren für die Doppler Global Velocimetry (DGV) zur Korrektur des Einflusses von Hintergrundbeleuchtung,” presented at Lasermethoden in der Strömungsmesstechnik—14. Fachtagung, Braunschweig, Germany, 5–7 September, 2006).

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

I. Röhle, R. Schodl, P. Voigt, and C. Willert, “Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components,” Meas. Sci. Technol. 11, 1023–1035 (2000).
[CrossRef]

Willert, C. E.

M. Raffel, C. E. Willert, S. T. Werely, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 2007).

I. Röhle and C. E. Willert, “Extension of Doppler global velocimetry to periodic flows,” Meas. Sci. Technol. 12, 420–431(2001).
[CrossRef]

Zscherp, C.

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

Appl. Opt. (2)

Exp. Fluids (8)

L. Büttner and J. Czarske, “Multi-mode fibre laser Doppler anemometer (LDA) with high spatial resolution for the investigation of boundary layers,” Exp. Fluids 36, 214–216 (2004).
[CrossRef]

S. A. Arnette, M. Samimy, and G. S. Elliot, “Two-component planar Doppler velocimetry in the compressible turbulent boundary layer,” Exp. Fluids 24, 323–332 (1998).
[CrossRef]

H. Müller, M. Eggert, J. Czarske, L. Büttner, and A. Fischer, “Single-camera Doppler global velocimetry based on frequency modulation techniques,” Exp. Fluids 43, 223–232 (2007).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array,” Exp. Fluids 47, 599–611 (2009).
[CrossRef]

H.-G. Maas, A. W. Gruen, and D. A. Papantoniou, “Particle tracking velocimetry in three-dimensional flows: Part A,” Exp. Fluids 15 (2), 133–146 (1993).
[CrossRef]

M. P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Exp. Fluids 15, 295–307 (1993).
[CrossRef]

M. Kegalj and H.-P. Schiffer, “Endoscopic PIV measurements in a low pressure turbine rig,” Exp. Fluids 47, 689–705 (2009).
[CrossRef]

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Instantaneous, three-component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Exp. Fluids Suppl. (1)

J. Westerweel, “Theoretical analysis of the measurement precision in particle image velocimetry,” Exp. Fluids Suppl. 29, S3–S12 (2000).
[CrossRef]

Int. J. Heat Fluid Flow (1)

M. Fischer, J. Jovanović, and F. Durst, “Near-wall behaviour of statistical properties in turbulent flows,” Int. J. Heat Fluid Flow 21, 471–479 (2000).
[CrossRef]

J. Fluid Mech. (1)

F. Durst, J. Jovanović, and J. Sender, “LDA measurements in the near-wall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–355 (1995).
[CrossRef]

J. Turbomach. (1)

M. Voges, R. Schnell, C. Willert, R. Mönig, M. W. Müller, and C. Zscherp, “Investigation of blade tip interaction with casing treatment in a transonic compressor—Part I: particle image velocimetry,” J. Turbomach. 133, 011007 (2011).
[CrossRef]

Meas. Sci. Technol. (7)

J. F. Meyers, “Development of Doppler global velocimetry as a flow diagnostic tool,” Meas. Sci. Technol. 6, 769–783 (1995).
[CrossRef]

A. Fischer, L. Büttner, J. Czarske, M. Eggert, G. Grosche, and H. Müller, “Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation,” Meas. Sci. Technol. 18, 2529–2545 (2007).
[CrossRef]

T. O. H. Charrett and R. P. Tatam, “Single camera three component planar velocity measurements using two-frequency planar Doppler velocimetry (2ν-PDV),” Meas. Sci. Technol. 17, 1194–1206 (2006).
[CrossRef]

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17, 1670–1679 (2006).
[CrossRef]

I. Röhle and C. E. Willert, “Extension of Doppler global velocimetry to periodic flows,” Meas. Sci. Technol. 12, 420–431(2001).
[CrossRef]

I. Röhle, R. Schodl, P. Voigt, and C. Willert, “Recent developments and applications of quantitative laser light sheet measuring techniques in turbomachinery components,” Meas. Sci. Technol. 11, 1023–1035 (2000).
[CrossRef]

A. Fischer, J. König, and J. Czarske, “Speckle noise influence on measuring turbulence spectra using time-resolved Doppler global velocimetry with laser frequency modulation,” Meas. Sci. Technol. 19, 125402 (2008).
[CrossRef]

Measurement (1)

A. Fischer, T. Pfister, and J. Czarske, “Derivation and comparison of fundamental uncertainty limits for laser-two-focus velocimetry, laser Doppler anemometry and Doppler global velocimetry,” Measurement 43, 1556–1574 (2010).
[CrossRef]

Optik (1)

A. Fischer and J. Czarske, “Signal processing efficiency of Doppler global velocimetry with laser frequency modulation,” Optik 121, 1891–1899 (2010).
[CrossRef]

Quantum Electron. (1)

Y. N. Dubnishchev, Y. V. Chugui, and J. Kompenhans, “Laser Doppler visualisation of the velocity field by excluding the influence of multiparticle scattering,” Quantum Electron. 39, 962–966 (2009).
[CrossRef]

Other (11)

The assumption of linearity is valid for small differences of the Doppler frequencies with regard to the width of the transmission curve edges of the absorption cell.

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

J. F. Meyers, J. W. Lee, and A. A. Cavone, “Boundary layer measurements in a supersonic wind tunnel using Doppler global velocimetry,” presented at 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 5–8 July, 2010).

P. Voigt, “Non-linear effects in planar scattering techniques: proof of existence, simulations and numerical corrections of extinction and multiple scattering,” presented at 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 13–16 July, 1998).

R. Schodl, G. Stockhausen, C. Willert, and J. Klinner, “Komplementär-Streifen-Verfahren für die Doppler Global Velocimetry (DGV) zur Korrektur des Einflusses von Hintergrundbeleuchtung,” presented at Lasermethoden in der Strömungsmesstechnik—14. Fachtagung, Braunschweig, Germany, 5–7 September, 2006).

A. Fischer, L. Büttner, J. Czarske, M. Eggert, and H. Müller, “Array Doppler global velocimeter with laser frequency modulation for turbulent flow analysis—sensor investigation and application,” in Imaging Measurement Methods for Flow Analysis, W.Nitsche and C.Dobriloff, eds. (Springer, 2009), pp. 31–41.
[CrossRef]

L. E. Drain, The Laser Doppler Technique (John Wiley & Sons, Chichester, 1980).

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques(Springer, 2003).

F. Durst, R. Martinuzzi, J. Sender, and D. Thevenin, “LDA-measurements of mean velocity, RMS-values and higher order moments of turbulence intensity fluctuations in flow fields with strong velocity gradients,” presented at the 6th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 20–23 July, 1992, p. S5.

M. Raffel, C. E. Willert, S. T. Werely, and J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) General setup of DGV for single-component measurement and (b) receiving unit for DGV without laser frequency modulation (black and gray components) and DGV with laser frequency modulation (only black components).

Fig. 2
Fig. 2

(a) DGV without laser frequency modulation: laser stabilization at the edge of the cell transmission curve with laser frequency f c , (b) DGV with sinusoidal laser frequency modulation illustrated at the measured transmission curve of the cesium D 2 line (modulation period T m ) [17].

Fig. 3
Fig. 3

Particle scenario created for the light scattering simulation as an example (particle concentration c p = 2 × 10 10 m 3 ). The directly illuminated particles and the observed particles are highlighted.

Fig. 4
Fig. 4

Effect A: Spatial flow sampling (example). Because of the flow velocity gradient, the mean velocity ν ^ of the particles p 1 and p 2 does not equal the mean flow velocity ν ¯ .

Fig. 5
Fig. 5

(a) Velocity field of a flow with the velocity gradient G and (b) the orientation of G as used for the simulation.

Fig. 6
Fig. 6

(a) Mean value and (b) standard deviation of the simulated errors Δ ν due to the spatial flow sampling w.r.t. seeding particle concentration with 95% confidence levels (flow gradient G = 10 m / s / mm ).

Fig. 7
Fig. 7

Effect B: multiple-particle scattering.

Fig. 8
Fig. 8

(a) Mean value and (b) standard deviation of the simulated errors Δ ν due to multiple-particle scattering w.r.t. seeding particle concentration with 95% confidence levels (flow gradient G = 10 m / s / mm ).

Fig. 9
Fig. 9

Setup of illumination and receiving unit for measuring multiple-particle scattering and/or background scattering.

Fig. 10
Fig. 10

Measured and simulated power of multiply scattered light from the shadowed measurement volume (adjacent MV) and the simulated power of secondary and tertiary scattered light from the illuminated measurement volume w.r.t. the seeding particle concentration. All values are normalized by the total scattered light power from the illuminated measurement volume.

Fig. 11
Fig. 11

Effect C: background scattering, (a) C1: reflection of laser light, (b) C2: reflection of scattered light, (c) C3: particle illumination by reflected laser light.

Fig. 12
Fig. 12

(a) Setup of measurements at a nozzle flow with type C1 distortion, (b) measured velocity profiles and (c) relative velocity error over x (free jet velocity ν ^ max 30 m / s ).

Fig. 13
Fig. 13

(a) Setup of measurements at a nozzle flow with type C2 distortion, (b) measured velocity profiles and (c) relative velocity error over x (free jet velocity ν ^ max 26 m / s ).

Fig. 14
Fig. 14

(a) FM-DGV setup for the near-wall measurement traversing the nozzle ( 20 mm diameter) and the plate (flat plate boundary layer along the z axis), (b) photo of the FM-DGV setup.

Fig. 15
Fig. 15

(a) Measured flat plate boundary layer using FM-DGV and a hot-wire probe with 95% confidence levels, (b) measured 2D flat plate boundary layer, (c) sample velocity profiles at two different x-positions (free jet velocity ν ^ max 25 m / s ).

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

f D = ( o i ) ν flow λ
f D = | o i | λ · ν ,
ν ^ = λ | o i | · f ¯ D .
f ¯ D = a f D , a P s , a a P s , a .
Δ ν = e P s , e ( o i ) | o i | ν e e P s , e ν ¯ .
ν flow ( ν ¯ + G · d ) e flow
Δ ν = G · ( o i ) | o i | e flow · e P s , e d e e P s , e .
σ Δ ν 1 N t = s | ν ¯ | T .
σ Δ ν G d max c p V m v
σ Δ ν G c p | ν ¯ | T d max b depth .
Δ ν = ν ^ ν ^ primary .
f D , e = ( o i ) ν e λ .
f D , l m = ( r l m i ) ν l λ + ( o r l m ) ν m λ .
Δ ν = λ | o i | ( e f D , e P s , e + m l m f D , l m P s , l m e P s , e + m l m P s , l m e f D , e P s , e e P s , e ) .
Δ ν = m l m e [ ( r l m i ) | o i | ν l + ( o r l m ) | o i | ν m ( o i ) | o i | ν e ] P s , e P s , l m ( P s , primary + P s , secondary ) P s , primary
P s , primary = e P s , e , P s , secondary = m l m P s , l m
Δ ν = G · m l m e [ ( r l m i ) | o i | d l + ( o r l m ) | o i | d m ( o i ) | o i | d e ] e flow P s , e P s , l m ( P s , primary + P s , secondary ) P s , primary .
Δ ν = ν ^ ν ^ primary = λ | o i | ( e f D , e P s , e + h f D , h P s , h e P s , e + h P s , h e f D , e P s , e e P s , e ) .
P s , primary = e P s , e , P s , BG = h P s , h .
f D , h = ( o i ) ν BG λ .
Δ ν = ( o i | o i | ν BG ν ^ primary ) P s , BG P s , primary + P s , BG .
Δ ν ν ^ primary = P s , BG P s , primary + P s , BG .
ν ^ corrected = ν ^ primary = ν ^ 1 P s , BG / ( P s , primary + P s , BG ) .
f D , h = ( o i ) ν e λ .
Δ ν = 2 ν ^ primary o · e flow ( o i ) e flow · P s , BG P s , primary + P s , BG .
Δ ν ν ^ primary = P s , B G P s , primary + P s , B G .
f D , h = ( o ( i ) ) ν e λ .
Δ ν = 2 ν ^ primary i · e flow ( o i ) e flow · P s , BG P s , primary + P s , BG .

Metrics