Abstract

We report here an experimental investigation for establishing and quantifying a link between the growth and decay characteristics of fiber Bragg gratings. One of the key aspects of our work is the determination of the defect energy distribution from the grating characteristics measured during their fabrication. We observe a strong correlation between the growth-based defect energy distribution and that obtained through accelerated aging experiments, paving the way for predicting the decay characteristics of fiber Bragg gratings from their growth data. Such a prediction is significant in simplifying the postfabrication steps required to enhance the thermal stability of fiber Bragg gratings.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, 17–34 (1994).
    [CrossRef]
  2. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [CrossRef]
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House Inc, 1999), pp. 15–64.
  4. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  5. S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
    [CrossRef]
  6. W. Primak, “Large temperature range annealing,” J. Appl. Phys. 31, 1524–1537 (1960).
    [CrossRef]
  7. J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
    [CrossRef]
  8. S. Pal, J. Mandal, T. Sun, and K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42, 2188–2197 (2003).
    [CrossRef] [PubMed]
  9. N. K. Viswanathan and D. L. LaBrake, “Accelerated aging studies of chirped Bragg gratings written in deuterium-loaded germano-silicate fibers,” J. Lightwave Technol. 22, 1990–2000(2004).
    [CrossRef]
  10. R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
    [CrossRef]
  11. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
    [CrossRef]
  12. B. Srinivasan, V. J. Vishnu Prasad, and J. Rajesh Joseph, “Experimental investigation of link between growth and decay of fiber Bragg gratings,” Proceedings of the International Conference on Fiber Optics and Photonics, New Delhi, 2008.
  13. V. B. Sulimov, V. O. Sokolov, E. M. Dianov, and B. Poumellec, “Photoinduced structural transformation in silica glass: The role of oxygen vacancies in the mechanism for UV-written refractive index gratings,” Phys. Status Solidi A 158, 155–160(1996).
    [CrossRef]
  14. T. Tamura, G-H. Lu, M. Kohyama, and R. Yamamoto, “‘E’ centers in Ge-doped SiO2 glass,” Phys. Rev. B 70, 153201(2004).
    [CrossRef]
  15. M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
    [CrossRef]

2008 (2)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

B. Srinivasan, V. J. Vishnu Prasad, and J. Rajesh Joseph, “Experimental investigation of link between growth and decay of fiber Bragg gratings,” Proceedings of the International Conference on Fiber Optics and Photonics, New Delhi, 2008.

2007 (1)

R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
[CrossRef]

2004 (2)

2003 (1)

2001 (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

2000 (1)

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

1999 (1)

A. Othonos and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House Inc, 1999), pp. 15–64.

1998 (1)

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

1997 (1)

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

1996 (1)

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, and B. Poumellec, “Photoinduced structural transformation in silica glass: The role of oxygen vacancies in the mechanism for UV-written refractive index gratings,” Phys. Status Solidi A 158, 155–160(1996).
[CrossRef]

1994 (2)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, 17–34 (1994).
[CrossRef]

1960 (1)

W. Primak, “Large temperature range annealing,” J. Appl. Phys. 31, 1524–1537 (1960).
[CrossRef]

Asokan, S.

R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
[CrossRef]

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Dianov, E. M.

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, and B. Poumellec, “Photoinduced structural transformation in silica glass: The role of oxygen vacancies in the mechanism for UV-written refractive index gratings,” Phys. Status Solidi A 158, 155–160(1996).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Grattan, K. T. V.

Guo, J. Z. Y.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Joseph, J. Rajesh

B. Srinivasan, V. J. Vishnu Prasad, and J. Rajesh Joseph, “Experimental investigation of link between growth and decay of fiber Bragg gratings,” Proceedings of the International Conference on Fiber Optics and Photonics, New Delhi, 2008.

Joseph, R.

R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House Inc, 1999), pp. 15–64.

Kannan, S.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Kashyap, R.

R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, 17–34 (1994).
[CrossRef]

Kohyama, M.

T. Tamura, G-H. Lu, M. Kohyama, and R. Yamamoto, “‘E’ centers in Ge-doped SiO2 glass,” Phys. Rev. B 70, 153201(2004).
[CrossRef]

Kristensen, M.

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

LaBrake, D. L.

Lemaire, P. J.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Lu, G-H.

T. Tamura, G-H. Lu, M. Kohyama, and R. Yamamoto, “‘E’ centers in Ge-doped SiO2 glass,” Phys. Rev. B 70, 153201(2004).
[CrossRef]

Madhav, K. V.

R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
[CrossRef]

Mandal, J.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House Inc, 1999), pp. 15–64.

Pal, S.

Pederson, J. E.

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

Poumellec, B.

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, and B. Poumellec, “Photoinduced structural transformation in silica glass: The role of oxygen vacancies in the mechanism for UV-written refractive index gratings,” Phys. Status Solidi A 158, 155–160(1996).
[CrossRef]

Prasad, V. J. Vishnu

B. Srinivasan, V. J. Vishnu Prasad, and J. Rajesh Joseph, “Experimental investigation of link between growth and decay of fiber Bragg gratings,” Proceedings of the International Conference on Fiber Optics and Photonics, New Delhi, 2008.

Primak, W.

W. Primak, “Large temperature range annealing,” J. Appl. Phys. 31, 1524–1537 (1960).
[CrossRef]

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

Sokolov, V. O.

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, and B. Poumellec, “Photoinduced structural transformation in silica glass: The role of oxygen vacancies in the mechanism for UV-written refractive index gratings,” Phys. Status Solidi A 158, 155–160(1996).
[CrossRef]

Srinivasan, B.

B. Srinivasan, V. J. Vishnu Prasad, and J. Rajesh Joseph, “Experimental investigation of link between growth and decay of fiber Bragg gratings,” Proceedings of the International Conference on Fiber Optics and Photonics, New Delhi, 2008.

R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
[CrossRef]

Sulimov, V. B.

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, and B. Poumellec, “Photoinduced structural transformation in silica glass: The role of oxygen vacancies in the mechanism for UV-written refractive index gratings,” Phys. Status Solidi A 158, 155–160(1996).
[CrossRef]

Sun, T.

Tamura, T.

T. Tamura, G-H. Lu, M. Kohyama, and R. Yamamoto, “‘E’ centers in Ge-doped SiO2 glass,” Phys. Rev. B 70, 153201(2004).
[CrossRef]

Viswanathan, N. K.

R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
[CrossRef]

N. K. Viswanathan and D. L. LaBrake, “Accelerated aging studies of chirped Bragg gratings written in deuterium-loaded germano-silicate fibers,” J. Lightwave Technol. 22, 1990–2000(2004).
[CrossRef]

Yamamoto, R.

T. Tamura, G-H. Lu, M. Kohyama, and R. Yamamoto, “‘E’ centers in Ge-doped SiO2 glass,” Phys. Rev. B 70, 153201(2004).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

R. Joseph, N. K. Viswanathan, S. Asokan, K. V. Madhav, and B. Srinivasan, “Predicting Thermal Stability of Fiber Bragg Gratings—Isothermal Annealing within Isochronal Annealing,” Electron. Lett. 43, 1341–1342 (2007).
[CrossRef]

J. Appl. Phys. (3)

W. Primak, “Large temperature range annealing,” J. Appl. Phys. 31, 1524–1537 (1960).
[CrossRef]

J. Rathje, M. Kristensen, and J. E. Pederson, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88, 1050–1055 (2000).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Lightwave Technol. (2)

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

N. K. Viswanathan and D. L. LaBrake, “Accelerated aging studies of chirped Bragg gratings written in deuterium-loaded germano-silicate fibers,” J. Lightwave Technol. 22, 1990–2000(2004).
[CrossRef]

J. Non-Cryst. Solids (1)

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

Laser Photon. Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Opt. Fiber Technol. (1)

R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, 17–34 (1994).
[CrossRef]

Phys. Rev. B (2)

T. Tamura, G-H. Lu, M. Kohyama, and R. Yamamoto, “‘E’ centers in Ge-doped SiO2 glass,” Phys. Rev. B 70, 153201(2004).
[CrossRef]

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

Phys. Status Solidi A (1)

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, and B. Poumellec, “Photoinduced structural transformation in silica glass: The role of oxygen vacancies in the mechanism for UV-written refractive index gratings,” Phys. Status Solidi A 158, 155–160(1996).
[CrossRef]

Other (2)

A. Othonos and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House Inc, 1999), pp. 15–64.

B. Srinivasan, V. J. Vishnu Prasad, and J. Rajesh Joseph, “Experimental investigation of link between growth and decay of fiber Bragg gratings,” Proceedings of the International Conference on Fiber Optics and Photonics, New Delhi, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured reflectivity and Bragg wavelength shift as a function of UV exposure time for a sample grating.

Fig. 2
Fig. 2

Plot of the average refractive index modulation as a function of the UV exposure time (symbol), fitted using power law (solid line).

Fig. 3
Fig. 3

Normalized integrated coupling coefficient (NICC) plotted as a function of demarcation energy ( E d ) for a sample grating. The solid curve is a sigmoidal fit (Eq. (4)) for the data.

Fig. 4
Fig. 4

Energy distribution of defects deduced from data collected during (a) the growth phase and (b) the decay phase for gratings fabricated in different photosensitive fibers.

Fig. 5
Fig. 5

Correlation of (a) the mean and (b) the variance of energy distribution deduced during growth and decay phases for gratings fabricated in different photosensitive fibers. The closed diamonds represent germania-doped fibers and open squares represent boron-codoped fibers.

Fig. 6
Fig. 6

Schematic diagram illustrating the process through which the energy distribution of defects are deduced during the growth and decay phases.

Tables (2)

Tables Icon

Table 1 Details of Gratings Fabricated in Different Commercially Available Photosensitive Fibers

Tables Icon

Table 2 Data Corresponding to Mean and Variance of Energy Distribution Measured during Growth and Decay Phases for Gratings Fabricated in Different Photosensitive Fibers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E d = k B ( T 0 + Δ T r ) ln ( k 1 0 t )
δ λ B = Δ λ B , Measured Δ n m n eff λ B Δ n 0 n eff λ B .
Δ T r = δ λ B ρ .
η ( t , T ) = 1 1 + A 0 exp ( β E d ) .
g ( E d ) = d η ( t , T ) d E d .

Metrics