Abstract

Many wind-field mapping applications require range-resolved atmospheric velocity measurements at long range and/or with a temporal resolution sufficient to investigate turbulence. We argue that this capability can be achieved only by coherent laser radar systems that transmit energetic (>1mJ) pulses. We describe such a system and describe single-pulse measurement of the range-resolved line-of-sight velocities, and show that the instrument-limited reproducibility of the measurements is 0.4ms1.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker, A. V. Jelalian, and J. A. L. Thomson, “Laser-Doppler system for detection of aircraft trailing vorticies,” Proc. IEEE 58, 322–326 (1970).
    [CrossRef]
  2. S. Hannon and J. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994).
    [CrossRef]
  3. J. W. Bilbro and W. W. Vaughan, “Wind field measurements in the non-precipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system,” Bull. Am. Meteorol. Soc. 59, 1095–1100 (1978).
    [CrossRef]
  4. J. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1984).
    [CrossRef] [PubMed]
  5. J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent launch-site atmospheric wind sounder: Theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
    [CrossRef] [PubMed]
  6. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994).
    [CrossRef]
  7. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [CrossRef]
  8. C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
    [CrossRef]
  9. T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, “11 mJ, 15 Hz single-frequency diode-pumped Q-switched Er:Yb:phosphate glass laser,” Opt. Lett. 26, 1262–1264 (2001).
    [CrossRef]
  10. “Safety of laser products—Part 1: Equipment classification, requirements and users guide,” IEC Publ. IEC 60825-1(International Electrotechnical Commission2001).
  11. S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference 2009 (CLRC XV) (Curran, 2009), pp. 59–62.
  12. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18, 13673–13678 (2010).
    [CrossRef] [PubMed]
  13. N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
    [CrossRef]
  14. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754–756 (2006).
    [CrossRef] [PubMed]
  15. D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett. 34, 1501–1503 (2009).
    [CrossRef] [PubMed]
  16. S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
    [CrossRef]
  17. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
    [CrossRef] [PubMed]
  18. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
    [CrossRef]
  19. G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450(2002).
    [CrossRef] [PubMed]
  20. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Malinga, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
    [CrossRef] [PubMed]
  21. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  22. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30, 2855–2857 (2005).
    [CrossRef] [PubMed]
  23. M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14, 11071–11076 (2006).
    [CrossRef] [PubMed]
  24. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Fox, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
    [CrossRef] [PubMed]
  25. A. McGrath, J. Munch, G. Smith, and P. J. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
    [CrossRef]
  26. A. McGrath, J. Munch, and P. J. Veitch, “Coherent laser radar using an injection seeded Q-switched erbium:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 234–237.
  27. K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm coherent lidar using injection-seeded, LD pumped, Er:Yb:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 198–201.
  28. T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5 μm coherent lidar using a single longitudinal-mode diode-pumped Q-switched Er:Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Post conference ed., TOPS (Opt. Soc. America, 2000), Vol.  39, pp. 438–439.
  29. T. Yanagsawa, K. Asaka, and Y. Hirano, “10.9 mJ single frequency diode-pumped Q-switched Er:Yb:glass laser for coherent Doppler lidar,” Proc. SPIE 4153, 86–92 (2001).
    [CrossRef]
  30. T. Rutten, P. J. Veitch, and J. Munch, “Injection mode-locked guide star laser concept and design verification experiments,” Opt. Express 15, 2369–2374 (2007).
    [CrossRef] [PubMed]
  31. P. J. Veitch, International Patent PCT/AU2006/00185 (2008).
  32. T. P. Rutten, P. J. Veitch, and J. Munch, “Efficient pulse stretching of Q-switched lasers,” IEEE J. Quantum Electron. 44, 911–915 (2008).
    [CrossRef]
  33. J. Richards and A. McInnes, “Versatile, efficient, diode-pumped miniature slab laser,” Opt. Lett. 20, 371–373 (1995).
    [CrossRef] [PubMed]
  34. A. McInnes and J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
    [CrossRef]
  35. W. Risk, “Modelling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
    [CrossRef]
  36. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
    [CrossRef]
  37. P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
    [CrossRef]
  38. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005).
  39. J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidar based on fiber technology,” C. R. Physique 7, 213–223 (2006).
    [CrossRef]
  40. A. E. Siegman, Lasers (University Science Books, 1986).
  41. A. Belmonte, “Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters,” Opt. Express 11, 2041–2046 (2003).
    [CrossRef] [PubMed]
  42. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications (Prentice-Hall, 1996).
  43. C. W. De Silva, Vibration and Shock Handbook (CRC Press, 2005).
    [CrossRef]
  44. S. Gade and H. Herlufsen, “Use of weighting functions in DFT/FFT analysis (Part 1),” Tech. Rep.3, Bruel Kjaer (1987).
  45. R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
    [CrossRef]
  46. R. Hardesty, R. Keeler, M. J. Post, and R. Richter, “Characteristics of coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981).
    [CrossRef] [PubMed]
  47. P. H. Flamant, R. T. Menzies, and M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23, 1412–1417 (1984).
    [CrossRef] [PubMed]
  48. S. R. Murty, “Aerosol speckle effects on atmospheric pulsed lidar backscattered signals,” Appl. Opt. 28, 875–878 (1989).
    [CrossRef] [PubMed]
  49. K. P. Chan and D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
    [CrossRef]

2010 (2)

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef] [PubMed]

2009 (2)

D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett. 34, 1501–1503 (2009).
[CrossRef] [PubMed]

S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference 2009 (CLRC XV) (Curran, 2009), pp. 59–62.

2008 (3)

2007 (2)

2006 (3)

2005 (4)

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005).

C. W. De Silva, Vibration and Shock Handbook (CRC Press, 2005).
[CrossRef]

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
[CrossRef]

W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30, 2855–2857 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (1)

2001 (4)

T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, “11 mJ, 15 Hz single-frequency diode-pumped Q-switched Er:Yb:phosphate glass laser,” Opt. Lett. 26, 1262–1264 (2001).
[CrossRef]

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

“Safety of laser products—Part 1: Equipment classification, requirements and users guide,” IEC Publ. IEC 60825-1(International Electrotechnical Commission2001).

T. Yanagsawa, K. Asaka, and Y. Hirano, “10.9 mJ single frequency diode-pumped Q-switched Er:Yb:glass laser for coherent Doppler lidar,” Proc. SPIE 4153, 86–92 (2001).
[CrossRef]

2000 (3)

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
[CrossRef]

T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5 μm coherent lidar using a single longitudinal-mode diode-pumped Q-switched Er:Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Post conference ed., TOPS (Opt. Soc. America, 2000), Vol.  39, pp. 438–439.

C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
[CrossRef]

1999 (2)

A. McGrath, J. Munch, and P. J. Veitch, “Coherent laser radar using an injection seeded Q-switched erbium:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 234–237.

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm coherent lidar using injection-seeded, LD pumped, Er:Yb:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 198–201.

1998 (3)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

A. McGrath, J. Munch, G. Smith, and P. J. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
[CrossRef]

1996 (2)

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications (Prentice-Hall, 1996).

A. McInnes and J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

1995 (1)

1994 (2)

S. Hannon and J. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994).
[CrossRef]

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994).
[CrossRef]

1993 (2)

J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent launch-site atmospheric wind sounder: Theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
[CrossRef] [PubMed]

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

1991 (2)

K. P. Chan and D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

1989 (1)

1988 (1)

1987 (1)

S. Gade and H. Herlufsen, “Use of weighting functions in DFT/FFT analysis (Part 1),” Tech. Rep.3, Bruel Kjaer (1987).

1986 (1)

A. E. Siegman, Lasers (University Science Books, 1986).

1984 (2)

1981 (1)

1978 (1)

J. W. Bilbro and W. W. Vaughan, “Wind field measurements in the non-precipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system,” Bull. Am. Meteorol. Soc. 59, 1095–1100 (1978).
[CrossRef]

1970 (1)

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thomson, “Laser-Doppler system for detection of aircraft trailing vorticies,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Ando, T.

Asaka, K.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, “11 mJ, 15 Hz single-frequency diode-pumped Q-switched Er:Yb:phosphate glass laser,” Opt. Lett. 26, 1262–1264 (2001).
[CrossRef]

T. Yanagsawa, K. Asaka, and Y. Hirano, “10.9 mJ single frequency diode-pumped Q-switched Er:Yb:glass laser for coherent Doppler lidar,” Proc. SPIE 4153, 86–92 (2001).
[CrossRef]

T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5 μm coherent lidar using a single longitudinal-mode diode-pumped Q-switched Er:Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Post conference ed., TOPS (Opt. Soc. America, 2000), Vol.  39, pp. 438–439.

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm coherent lidar using injection-seeded, LD pumped, Er:Yb:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 198–201.

Augere, B.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidar based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[CrossRef]

Barty, C. P. J.

Beach, R. J.

Beck, S. M.

Belden, P. M.

Belmonte, A.

Bilbro, J. W.

J. W. Bilbro and W. W. Vaughan, “Wind field measurements in the non-precipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system,” Bull. Am. Meteorol. Soc. 59, 1095–1100 (1978).
[CrossRef]

Birks, T. A.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Birnbaum, M.

Boitel, C.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Bouwmans, G.

Bruneau, D.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Brussard, M.

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

Cariou, J.-P.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidar based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[CrossRef]

Chan, K. P.

K. P. Chan and D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

Chang, N. W. H.

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef] [PubMed]

Chen, D. W.

Chicklis, E.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
[CrossRef]

Clarkson, W. A.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Dabas, A.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Dawson, J. W.

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

De Silva, C. W.

C. W. De Silva, Vibration and Shock Handbook (CRC Press, 2005).
[CrossRef]

Delville, P.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Dong, L.

Droinski, P.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Dullaway, S.

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

Eacock, J. R.

Flamant, P. H.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

P. H. Flamant, R. T. Menzies, and M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23, 1412–1417 (1984).
[CrossRef] [PubMed]

Fox, P. H.

Francis, M.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
[CrossRef]

Frede, M.

Frehlich, R.

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994).
[CrossRef]

Gade, S.

S. Gade and H. Herlufsen, “Use of weighting functions in DFT/FFT analysis (Part 1),” Tech. Rep.3, Bruel Kjaer (1987).

Goldberg, L.

Hale, C. P.

Hall, J. F. F.

Hamazu, K.

Hannon, S.

S. Hannon and J. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994).
[CrossRef]

Hannon, S. M.

S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference 2009 (CLRC XV) (Curran, 2009), pp. 59–62.

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994).
[CrossRef]

Hardesty, R.

Hardesty, R. M.

Harris, M.

Hawley, J. G.

Heebner, J. E.

Henderson, S. W.

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994).
[CrossRef]

J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent launch-site atmospheric wind sounder: Theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
[CrossRef] [PubMed]

Herlufsen, H.

S. Gade and H. Herlufsen, “Use of weighting functions in DFT/FFT analysis (Part 1),” Tech. Rep.3, Bruel Kjaer (1987).

Herrmann, H.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Hildebrandt, M.

Hirano, Y.

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, “11 mJ, 15 Hz single-frequency diode-pumped Q-switched Er:Yb:phosphate glass laser,” Opt. Lett. 26, 1262–1264 (2001).
[CrossRef]

T. Yanagsawa, K. Asaka, and Y. Hirano, “10.9 mJ single frequency diode-pumped Q-switched Er:Yb:glass laser for coherent Doppler lidar,” Proc. SPIE 4153, 86–92 (2001).
[CrossRef]

T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5 μm coherent lidar using a single longitudinal-mode diode-pumped Q-switched Er:Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Post conference ed., TOPS (Opt. Soc. America, 2000), Vol.  39, pp. 438–439.

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm coherent lidar using injection-seeded, LD pumped, Er:Yb:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 198–201.

Hodgson, N.

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005).

Hosken, D. J.

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef] [PubMed]

Huffaker, R. M.

Humbert, G.

Jackson, M. E.

Jelalian, A. V.

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thomson, “Laser-Doppler system for detection of aircraft trailing vorticies,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Johnson, B. H.

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

Kameyama, S.

Karlsson, C. J.

Kavaya, M. J.

Keeler, R.

Killinger, D. K.

K. P. Chan and D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

Klier, M.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Kliner, D. A. V.

Knight, J. C.

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Malinga, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Konves, J.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
[CrossRef]

Koplow, J. P.

Kopp, F.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Kracht, D.

Kwee, P.

Laporta, P.

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

Lawrence, T. R.

Letalick, D.

Longhi, S.

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

Lopez, M.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Loth, C.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

MacKinnon, A.

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

Malinga, B. J.

Manolakis, D. G.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications (Prentice-Hall, 1996).

May, P. T.

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

McGrath, A.

A. McGrath, J. Munch, and P. J. Veitch, “Coherent laser radar using an injection seeded Q-switched erbium:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 234–237.

A. McGrath, J. Munch, G. Smith, and P. J. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
[CrossRef]

McInnes, A.

A. McInnes and J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

J. Richards and A. McInnes, “Versatile, efficient, diode-pumped miniature slab laser,” Opt. Lett. 20, 371–373 (1995).
[CrossRef] [PubMed]

McLaughlin, J. M.

Meissonnier, M.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Menzies, R. T.

Messerly, M. J.

Moerder, D.

Munch, J.

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef] [PubMed]

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

T. P. Rutten, P. J. Veitch, and J. Munch, “Efficient pulse stretching of Q-switched lasers,” IEEE J. Quantum Electron. 44, 911–915 (2008).
[CrossRef]

T. Rutten, P. J. Veitch, and J. Munch, “Injection mode-locked guide star laser concept and design verification experiments,” Opt. Express 15, 2369–2374 (2007).
[CrossRef] [PubMed]

A. McGrath, J. Munch, and P. J. Veitch, “Coherent laser radar using an injection seeded Q-switched erbium:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 234–237.

A. McGrath, J. Munch, G. Smith, and P. J. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
[CrossRef]

Murty, S. R.

Nagel, E.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Oh, D.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Olsson, F. A. A.

Ottaway, D.

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Ottaway, D. J.

Pearson, G. N.

Peng, X.

Post, M. J.

Proakis, J. G.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications (Prentice-Hall, 1996).

Rahm, S.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Reid, I. M.

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

Reitebuch, O.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Richards, J.

A. McInnes and J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

J. Richards and A. McInnes, “Versatile, efficient, diode-pumped miniature slab laser,” Opt. Lett. 20, 371–373 (1995).
[CrossRef] [PubMed]

Richter, R.

Richter, R. A.

Risk, W.

Roberts, P. J.

Romand, B.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Rose, T. S.

Russell, P. St. J.

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Malinga, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Rutten, T.

Rutten, T. P.

T. P. Rutten, P. J. Veitch, and J. Munch, “Efficient pulse stretching of Q-switched lasers,” IEEE J. Quantum Electron. 44, 911–915 (2008).
[CrossRef]

Sahu, J. K.

Setzler, S.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
[CrossRef]

Shen, D. Y.

Shverdin, M. Y.

Siders, C. W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Simakov, N.

Smith, G.

Sridharan, A. K.

Stappaerts, E. A.

Streicher, J.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Svelto, O.

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

Taccheo, S.

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

Targ, R.

Thomson, J.

S. Hannon and J. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994).
[CrossRef]

Thomson, J. A. L.

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thomson, “Laser-Doppler system for detection of aircraft trailing vorticies,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Valla, M.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidar based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[CrossRef]

Vaughan, W. W.

J. W. Bilbro and W. W. Vaughan, “Wind field measurements in the non-precipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system,” Bull. Am. Meteorol. Soc. 59, 1095–1100 (1978).
[CrossRef]

Veitch, P. J.

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef] [PubMed]

P. J. Veitch, International Patent PCT/AU2006/00185 (2008).

T. P. Rutten, P. J. Veitch, and J. Munch, “Efficient pulse stretching of Q-switched lasers,” IEEE J. Quantum Electron. 44, 911–915 (2008).
[CrossRef]

T. Rutten, P. J. Veitch, and J. Munch, “Injection mode-locked guide star laser concept and design verification experiments,” Opt. Express 15, 2369–2374 (2007).
[CrossRef] [PubMed]

A. McGrath, J. Munch, and P. J. Veitch, “Coherent laser radar using an injection seeded Q-switched erbium:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 234–237.

A. McGrath, J. Munch, G. Smith, and P. J. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
[CrossRef]

Vincent, R. A.

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

Wadaka, S.

Weber, B. F.

Weber, H.

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005).

Werner, C.

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Williams, D. P.

Willke, B.

Wong, W. S.

Yanagisawa, T.

T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, “11 mJ, 15 Hz single-frequency diode-pumped Q-switched Er:Yb:phosphate glass laser,” Opt. Lett. 26, 1262–1264 (2001).
[CrossRef]

T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5 μm coherent lidar using a single longitudinal-mode diode-pumped Q-switched Er:Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Post conference ed., TOPS (Opt. Soc. America, 2000), Vol.  39, pp. 438–439.

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm coherent lidar using injection-seeded, LD pumped, Er:Yb:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 198–201.

Yanagsawa, T.

T. Yanagsawa, K. Asaka, and Y. Hirano, “10.9 mJ single frequency diode-pumped Q-switched Er:Yb:glass laser for coherent Doppler lidar,” Proc. SPIE 4153, 86–92 (2001).
[CrossRef]

Young, Y.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
[CrossRef]

Zink, F.

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

Appl. Opt. (9)

J. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1984).
[CrossRef] [PubMed]

J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent launch-site atmospheric wind sounder: Theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
[CrossRef] [PubMed]

C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
[CrossRef]

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
[CrossRef] [PubMed]

G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450(2002).
[CrossRef] [PubMed]

A. McGrath, J. Munch, G. Smith, and P. J. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
[CrossRef]

R. Hardesty, R. Keeler, M. J. Post, and R. Richter, “Characteristics of coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981).
[CrossRef] [PubMed]

P. H. Flamant, R. T. Menzies, and M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23, 1412–1417 (1984).
[CrossRef] [PubMed]

S. R. Murty, “Aerosol speckle effects on atmospheric pulsed lidar backscattered signals,” Appl. Opt. 28, 875–878 (1989).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (1)

J. W. Bilbro and W. W. Vaughan, “Wind field measurements in the non-precipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system,” Bull. Am. Meteorol. Soc. 59, 1095–1100 (1978).
[CrossRef]

C. R. Physique (1)

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidar based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[CrossRef]

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

IEEE J. Quantum Electron. (4)

T. P. Rutten, P. J. Veitch, and J. Munch, “Efficient pulse stretching of Q-switched lasers,” IEEE J. Quantum Electron. 44, 911–915 (2008).
[CrossRef]

A. McInnes and J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994).
[CrossRef]

J. Mod. Opt. (1)

S. Hannon and J. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993).
[CrossRef]

Opt. Eng. (2)

K. P. Chan and D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
[CrossRef]

C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Proc. IEEE (1)

R. M. Huffaker, A. V. Jelalian, and J. A. L. Thomson, “Laser-Doppler system for detection of aircraft trailing vorticies,” Proc. IEEE 58, 322–326 (1970).
[CrossRef]

Proc. SPIE (1)

T. Yanagsawa, K. Asaka, and Y. Hirano, “10.9 mJ single frequency diode-pumped Q-switched Er:Yb:glass laser for coherent Doppler lidar,” Proc. SPIE 4153, 86–92 (2001).
[CrossRef]

Radio Sci. (1)

R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998).
[CrossRef]

Other (11)

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications (Prentice-Hall, 1996).

C. W. De Silva, Vibration and Shock Handbook (CRC Press, 2005).
[CrossRef]

S. Gade and H. Herlufsen, “Use of weighting functions in DFT/FFT analysis (Part 1),” Tech. Rep.3, Bruel Kjaer (1987).

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005).

A. E. Siegman, Lasers (University Science Books, 1986).

P. J. Veitch, International Patent PCT/AU2006/00185 (2008).

A. McGrath, J. Munch, and P. J. Veitch, “Coherent laser radar using an injection seeded Q-switched erbium:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 234–237.

K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm coherent lidar using injection-seeded, LD pumped, Er:Yb:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 198–201.

T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5 μm coherent lidar using a single longitudinal-mode diode-pumped Q-switched Er:Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Post conference ed., TOPS (Opt. Soc. America, 2000), Vol.  39, pp. 438–439.

“Safety of laser products—Part 1: Equipment classification, requirements and users guide,” IEC Publ. IEC 60825-1(International Electrotechnical Commission2001).

S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference 2009 (CLRC XV) (Curran, 2009), pp. 59–62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A simplified schematic of the slave laser. Abbreviations: FW denotes the forward wave; RW denotes reverse wave; PBSC denotes polarizing beam splitter cube; HWP denotes half-wave plate; PZT represents the piezoelectric transducer on which one of the resonator mirrors is mounted.

Fig. 2
Fig. 2

End view schematic of the side-pumped, top/bottom cooled laser gain medium. TEC are thermoelectric coolers, used to control the temperatures of the laser diodes.

Fig. 3
Fig. 3

Schematic of the CLR system. The components within the slave laser are detailed in Fig. 1. Abbreviations: PBSC, polarizing beam splitter cube; AOM, acousto-optic modulator; HWP, half-wave plate; QWP, quarter-wave plate; FC, fiber coupler; FS, fiber splitter; FCBP, fiber-coupled balanced photo-receiver; FSBP, free-space balanced photo-receiver.

Fig. 4
Fig. 4

Fourier transform of the heterodyne beat from the transmitted pulse.

Fig. 5
Fig. 5

Correlations between the peak power and beat frequency of the transmitted pulse (upper plot), and between the buildup time and the beat frequency of the transmitted pulse (lower plot).

Fig. 6
Fig. 6

Probability distribution for the amplitude of the largest peak in the Fourier spectrum of the noise in the return detector channel.

Fig. 7
Fig. 7

Range-resolved profile of the instantaneous line-of- sight wind velocity, measured using a single-pulse. A 500-sample Hanning-weighted zero-padded data set was used for each range gate.

Fig. 8
Fig. 8

Spectra of atmospheric backscattered returns for two pulses separated by 1 s . The spectra of the transmitted pulses were identical within the resolution of the discrete Fourier transform. The frequencies of the largest peaks in each range-gate spectrum differ by one Fourier bin-width: 0.36 MHz .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v r = λ v d / 2

Metrics