Abstract

Many wind-field mapping applications require range-resolved atmospheric velocity measurements at long range and/or with a temporal resolution sufficient to investigate turbulence. We argue that this capability can be achieved only by coherent laser radar systems that transmit energetic (>1mJ) pulses. We describe such a system and describe single-pulse measurement of the range-resolved line-of-sight velocities, and show that the instrument-limited reproducibility of the measurements is 0.4ms1.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements

Christer J. Karlsson, Fredrik Å. A. Olsson, Dietmar Letalick, and Michael Harris
Appl. Opt. 39(21) 3716-3726 (2000)

1645 nm coherent Doppler wind lidar with a single-frequency Er:YAG laser

KaiXin Wang, ChunQing Gao, ZhiFeng Lin, Qing Wang, MingWei Gao, Shuai Huang, and ChaoYong Chen
Opt. Express 28(10) 14694-14704 (2020)

Potential for coherent Doppler wind velocity lidar using neodymium lasers

Thomas J. Kane, Bingkun Zhou, and Robert L. Byer
Appl. Opt. 23(15) 2477-2481 (1984)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription