Abstract

A deformable mirror made of a magnetic liquid has been used to produce conical surfaces with sub wavelength (λ/4) accuracy. The surface profile of the liquid mirror is controlled by 91 small magnetic coils. The mirror exhibits a linear response with respect to the currents driving the coils, and it allows for real-time changes of its surface profile. The magnetic liquid deformable mirror has been used to produce reflected beams having a conical wavefront; the propagation of the reflected beams was verified to be consistent with that of Bessel beams in the near and far field. The large dynamic range of such a deformable mirror has made it possible to generate Bessel beams with a broad range of beam parameters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Boivin, Théorie et Calcul des Figures de Diffraction de Révolution (Presses de l’Université Laval, 1964).
  2. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  3. V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
    [CrossRef] [PubMed]
  4. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
    [CrossRef]
  5. J. A. Kim, K. I. Lee, H. R. Noh, W. Jhe, and M. Ohtsu, “Atom trap in an axicon mirror,” Opt. Lett. 22, 117–119 (1997).
    [CrossRef] [PubMed]
  6. V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
    [CrossRef]
  7. M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12, 5887–5895 (2004).
    [CrossRef] [PubMed]
  8. B. Vohnsen, S. Castillo, and D. Rativa, “Wavefront sensing with an axicon,” Opt. Lett. 36, 846–848 (2011).
    [CrossRef] [PubMed]
  9. P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006).
    [CrossRef] [PubMed]
  10. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
    [CrossRef] [PubMed]
  11. V. Zambon, R. Forest, N. McCarthy, and M. Piché, “Inscription of optical waveguides with ultrafast Bessel beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA66.
    [PubMed]
  12. M. A. Porras and P. Di Trapani, “Localized and stationary light wave modes in dispersive media,” Phys. Rev. E 69, 066606 (2004).
    [CrossRef]
  13. M. Dallaire, N. McCarthy, and M. Piché, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18164 (2009).
    [CrossRef] [PubMed]
  14. P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
    [CrossRef]
  15. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [CrossRef]
  16. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
    [CrossRef]
  17. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
    [CrossRef] [PubMed]
  18. V. Vaicaitis and S. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
    [CrossRef]
  19. G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101–261103 (2008).
    [CrossRef]
  20. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155–3157 (2006).
    [CrossRef] [PubMed]
  21. X. Wang, H.-T. Dai, and K.-S. Xu, “High efficient tunable fractal axicon based on LCoS,” Chin. Phys. Lett. 25, 985–988(2008).
    [CrossRef]
  22. S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
    [CrossRef]
  23. R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).
  24. P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
    [CrossRef]
  25. D. Brousseau, E. F. Borra, M. Rochette, and D. Bouffard-Landry, “Linearization of the response of a 91-actuator magnetic liquid deformable mirror,” Opt. Express 18, 8239–8250(2010).
    [CrossRef] [PubMed]
  26. A. Iqbal and F. B. Amara, “Modeling of a magnetic-fluid deformable mirror for retinal imaging adaptive optics systems,” Int. J. Optomechatron. 1, 180–208 (2007).
    [CrossRef]
  27. J. C. Maxwell, Treatise on Electricity and Magnetism(Clarendon, 1873).

2011 (2)

B. Vohnsen, S. Castillo, and D. Rativa, “Wavefront sensing with an axicon,” Opt. Lett. 36, 846–848 (2011).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

2010 (3)

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
[CrossRef]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

D. Brousseau, E. F. Borra, M. Rochette, and D. Bouffard-Landry, “Linearization of the response of a 91-actuator magnetic liquid deformable mirror,” Opt. Express 18, 8239–8250(2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101–261103 (2008).
[CrossRef]

X. Wang, H.-T. Dai, and K.-S. Xu, “High efficient tunable fractal axicon based on LCoS,” Chin. Phys. Lett. 25, 985–988(2008).
[CrossRef]

2007 (3)

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

A. Iqbal and F. B. Amara, “Modeling of a magnetic-fluid deformable mirror for retinal imaging adaptive optics systems,” Int. J. Optomechatron. 1, 180–208 (2007).
[CrossRef]

V. Zambon, R. Forest, N. McCarthy, and M. Piché, “Inscription of optical waveguides with ultrafast Bessel beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA66.
[PubMed]

2006 (3)

2004 (3)

P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
[CrossRef]

M. A. Porras and P. Di Trapani, “Localized and stationary light wave modes in dispersive media,” Phys. Rev. E 69, 066606 (2004).
[CrossRef]

M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12, 5887–5895 (2004).
[CrossRef] [PubMed]

2003 (2)

V. Vaicaitis and S. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[CrossRef]

2002 (2)

V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
[CrossRef]

1997 (1)

1987 (1)

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

1964 (1)

A. Boivin, Théorie et Calcul des Figures de Diffraction de Révolution (Presses de l’Université Laval, 1964).

1954 (1)

1873 (1)

J. C. Maxwell, Treatise on Electricity and Magnetism(Clarendon, 1873).

Ait-Ameur, K.

R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).

Amara, F. B.

A. Iqbal and F. B. Amara, “Modeling of a magnetic-fluid deformable mirror for retinal imaging adaptive optics systems,” Int. J. Optomechatron. 1, 180–208 (2007).
[CrossRef]

Arnold, C. B.

Bergamesco, R.

P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
[CrossRef]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

Boivin, A.

A. Boivin, Théorie et Calcul des Figures de Diffraction de Révolution (Presses de l’Université Laval, 1964).

Borra, E. F.

Bouffard-Landry, D.

Brousseau, D.

Cagniot, E.

R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).

Castillo, S.

Chavez-Cerda, S.

V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Chiu, D. T.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101–261103 (2008).
[CrossRef]

Christodoulides, D.

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
[CrossRef]

Dai, H.-T.

X. Wang, H.-T. Dai, and K.-S. Xu, “High efficient tunable fractal axicon based on LCoS,” Chin. Phys. Lett. 25, 985–988(2008).
[CrossRef]

Dallaire, M.

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

De Koninck, Y.

de Saint-Denis, R.

R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).

Dholakia, K.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[CrossRef]

V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
[CrossRef]

V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

Di Trapani, P.

M. A. Porras and P. Di Trapani, “Localized and stationary light wave modes in dispersive media,” Phys. Rev. E 69, 066606 (2004).
[CrossRef]

Dufour, P.

Durnin, J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

Forest, R.

V. Zambon, R. Forest, N. McCarthy, and M. Piché, “Inscription of optical waveguides with ultrafast Bessel beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA66.
[PubMed]

Fortin, M.

Fromager, M.

R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

Garcés-Chavez, V.

V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Gingras, J.

P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
[CrossRef]

Golub, I.

Hopkins, A. B.

Iqbal, A.

A. Iqbal and F. B. Amara, “Modeling of a magnetic-fluid deformable mirror for retinal imaging adaptive optics systems,” Int. J. Optomechatron. 1, 180–208 (2007).
[CrossRef]

Jeffries, G. D. M.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101–261103 (2008).
[CrossRef]

Jhe, W.

Kim, J. A.

Kolesik, M.

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
[CrossRef]

Laird, P.

P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
[CrossRef]

Lee, K. I.

Leprince, P.

R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).

Maxwell, J. C.

J. C. Maxwell, Treatise on Electricity and Magnetism(Clarendon, 1873).

McCarthy, N.

M. Dallaire, N. McCarthy, and M. Piché, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18164 (2009).
[CrossRef] [PubMed]

V. Zambon, R. Forest, N. McCarthy, and M. Piché, “Inscription of optical waveguides with ultrafast Bessel beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA66.
[PubMed]

P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006).
[CrossRef] [PubMed]

McGloin, D.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[CrossRef]

V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

McLeod, E.

McLeod, J. H.

Mehendale, S. C.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Melville, H.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[CrossRef]

V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

Milne, G.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101–261103 (2008).
[CrossRef]

Mishra, S. R.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Moloney, J.

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
[CrossRef]

Noh, H. R.

Ohtsu, M.

Paulikas, S.

V. Vaicaitis and S. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

Piché, M.

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

Polynkin, P.

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
[CrossRef]

Porras, M. A.

M. A. Porras and P. Di Trapani, “Localized and stationary light wave modes in dispersive media,” Phys. Rev. E 69, 066606 (2004).
[CrossRef]

Ram, S. P.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Rativa, D.

Ritcey, A.

P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
[CrossRef]

Rochette, M.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

Sibbett, W.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[CrossRef]

V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
[CrossRef]

V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

Siviloglou, G.

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
[CrossRef]

Spalding, G. C.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[CrossRef]

Tiwari, S. K.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Truong, L.

P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
[CrossRef]

Vaicaitis, V.

V. Vaicaitis and S. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

Vohnsen, B.

Volke-Sepulveda, K.

V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Wang, X.

X. Wang, H.-T. Dai, and K.-S. Xu, “High efficient tunable fractal axicon based on LCoS,” Chin. Phys. Lett. 25, 985–988(2008).
[CrossRef]

Xu, K.-S.

X. Wang, H.-T. Dai, and K.-S. Xu, “High efficient tunable fractal axicon based on LCoS,” Chin. Phys. Lett. 25, 985–988(2008).
[CrossRef]

Zambon, V.

V. Zambon, R. Forest, N. McCarthy, and M. Piché, “Inscription of optical waveguides with ultrafast Bessel beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA66.
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101–261103 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

X. Wang, H.-T. Dai, and K.-S. Xu, “High efficient tunable fractal axicon based on LCoS,” Chin. Phys. Lett. 25, 985–988(2008).
[CrossRef]

Int. J. Optomechatron. (1)

A. Iqbal and F. B. Amara, “Modeling of a magnetic-fluid deformable mirror for retinal imaging adaptive optics systems,” Int. J. Optomechatron. 1, 180–208 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Methods (1)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[CrossRef]

Nature (1)

V. Garcés-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[CrossRef]

Opt. Eng. (1)

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Photon. News (1)

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, and D. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43(2010).
[CrossRef]

Opt. Quantum Electron. (1)

V. Vaicaitis and S. Paulikas, “Formation of Bessel beams with continuously variable cone angle,” Opt. Quantum Electron. 35, 1065–1071 (2003).
[CrossRef]

Optoelectron. Adv. Mater. (1)

R. de Saint-Denis, E. Cagniot, P. Leprince, M. Fromager, and K. Ait-Ameur, “Low cost adjustable axicon,” Optoelectron. Adv. Mater. 2, 693–696 (2008).

Phys. Rev. A (1)

V. Garcés-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Phys. Rev. E (1)

M. A. Porras and P. Di Trapani, “Localized and stationary light wave modes in dispersive media,” Phys. Rev. E 69, 066606 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. Laird, E. F. Borra, R. Bergamesco, J. Gingras, L. Truong, and A. Ritcey, “Deformable mirrors based on magnetic liquids,” Proc. SPIE 5490, 1493–1501 (2004).
[CrossRef]

Other (3)

J. C. Maxwell, Treatise on Electricity and Magnetism(Clarendon, 1873).

A. Boivin, Théorie et Calcul des Figures de Diffraction de Révolution (Presses de l’Université Laval, 1964).

V. Zambon, R. Forest, N. McCarthy, and M. Piché, “Inscription of optical waveguides with ultrafast Bessel beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA66.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layout of the experimental setup.

Fig. 2
Fig. 2

Evolution of the spatial profile of the Bessel beam produced by a 0.50 mrad MLDM axicon along the propagation axis and recorded with the CMOS camera. Each image has a size of 1.56 mm × 1.56 mm .

Fig. 3
Fig. 3

Mean radial intensity of the measured beam profile at three positions along the propagation axis ( z = 85 , 111, and 151 mm ) and fitted using the same Bessel beam profile.

Fig. 4
Fig. 4

(a) Surface of a 0.5 mrad axicon produced by the MLDM and recorded by the WFS. (b) Plane cut of (a) showing the cone tip.

Fig. 5
Fig. 5

(a) Observed far field produced by a 0.50 mrad MLDM axicon and imaged on the CMOS camera by a 300 mm focal length lens (insert). (b) Computed far-field distribution and simulated image (insert) using the Fourier transform of the conical surface recorded by the WFS. Both plots show a radial mean of the intensity distribution. The FWHM of the rings is given in relative units of the ring radius.

Fig. 6
Fig. 6

Measured radius of the annular far-field beam as a function of the different axicon cone angles produced by the MLDM through a linear scaling of the currents that were used to produce a 0.5 mrad axicon cone angle. The values of the angles are computed from the surface maps recorded by the WFS.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w = Ha ,
a = ( H t H ) 1 H t w ,
β = 2.4048 λ 2 π r 0 = 5 mrad ,

Metrics