Abstract

Calibration is essential to derive aerosol backscatter coefficients from elastic scattering lidar. Unlike the visible UV wavelengths where calibration is based on a molecular reference, calibration of the 1064nm lidar channel requires other approaches, which depend on various assumptions. In this paper, we analyze two independent calibration methods which use (i) low-altitude water phase clouds and (ii) high cirrus clouds. In particular, we show that to achieve optimal performance, aerosol attenuation below the cloud base and cloud multiple scattering must be accounted for. When all important processes are considered, we find that these two independent methods can provide a consistent calibration constant with relative differences less than 15%. We apply these calibration techniques to demonstrate the stability of our lidar on a monthly scale, along with a natural reduction of the lidar efficiency on an annual scale. Furthermore, our calibration procedure allows us to derive consistent aerosol backscatter coefficients and angstrom coefficient profiles (5321064nm) along with column extinction-to-backscatter ratios which are in good agreement with sky radiometer inversions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
    [CrossRef] [PubMed]
  2. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  3. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  4. M. J. Reagan, X. Wang, and M. J. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sens. 40, 2285–2290 (2002).
    [CrossRef]
  5. M. Osborn, J. Reagan, and X. Wang, “An operational space-borne lidar calibration algorithm for 1064 nm,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 777–780.
  6. J. Zhang and H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997).
    [CrossRef] [PubMed]
  7. M. Pahlow, V. A. Kovalev, and M. Parlange, “Calibration method for mutiangle lidar measurements,” Appl. Opt. 43, 2948–2956 (2004).
    [CrossRef] [PubMed]
  8. J. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
    [CrossRef]
  9. E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777–778 (2004).
    [CrossRef]
  10. J. Zhang, “A lidar calibration method by water cloud,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 625–628.
  11. Y. Hu, “Using water clouds for lidar calibration,” in Laser Applications to Chemical, Security and Environmental Analysis, Technical Digest (Optical Society of America, 2006), paper TuA4.
  12. C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.
  13. Z. Tao, M. P. McCormick, D. Wu, Z. Liu, and M. A. Vaughan, “Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar,” Appl. Opt. 47, 1478–1485 (2008).
    [CrossRef] [PubMed]
  14. M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
    [CrossRef]
  15. L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
    [CrossRef]
  16. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
    [CrossRef]
  17. Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009).
    [CrossRef]
  18. R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.
  19. C. Münkel and J. Räsänen, “New optical concept for commercial lidar ceilometers scanning the boundary layer,” Proc. SPIE 5571, 364–374 (2004).
    [CrossRef]
  20. N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000).
    [CrossRef]
  21. R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
    [CrossRef]
  22. R. H. Dubinsky, A. I. Carswell, and S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985).
    [CrossRef] [PubMed]
  23. C. M. R. Platt, “Remote sounding of high clouds. III. Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
    [CrossRef]
  24. J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
    [CrossRef]
  25. K. Kunkel and J. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
    [CrossRef]
  26. E. W. Eloranta, “A practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
    [CrossRef]
  27. U. Wandinger, “Multiple-scattering influence on extinction and backscatter coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
    [CrossRef]
  28. M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.
  29. R. J. Hogan, “Fast approximate calculation of multiply scattered lidar returns,” Appl. Opt. 45, 5984–5992 (2006).
    [CrossRef] [PubMed]
  30. E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
    [CrossRef]
  31. K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
    [CrossRef]
  32. C. Currie and S. Valencia, “Evaluation of the micro-pulse LIDAR clibration cnstant,” in Proceeding of 22nd International Laser Radar Conference, G.Pappalardo and A.Amodeo, eds. (European Space Agency, 2004), pp. 279–282.
  33. L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008).
    [CrossRef]
  34. J. Bosenberg and R. Hoff, “Plan for the implementation of the GAW aerosol lidar observation network GALION,” Global Atmosphere Watch report 178, World Meteorological Organization/TD 1443, World Meteorological Organization, 2007.
  35. A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
    [CrossRef]
  36. K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28, 2194–2195 (1989).
    [CrossRef] [PubMed]
  37. D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.
  38. K. N. Liou, Y. Takano, S. C. Ou, and M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000).
    [CrossRef]

2010 (1)

M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

2009 (3)

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009).
[CrossRef]

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

2008 (2)

Z. Tao, M. P. McCormick, D. Wu, Z. Liu, and M. A. Vaughan, “Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar,” Appl. Opt. 47, 1478–1485 (2008).
[CrossRef] [PubMed]

L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008).
[CrossRef]

2007 (1)

J. Bosenberg and R. Hoff, “Plan for the implementation of the GAW aerosol lidar observation network GALION,” Global Atmosphere Watch report 178, World Meteorological Organization/TD 1443, World Meteorological Organization, 2007.

2006 (3)

R. J. Hogan, “Fast approximate calculation of multiply scattered lidar returns,” Appl. Opt. 45, 5984–5992 (2006).
[CrossRef] [PubMed]

Y. Hu, “Using water clouds for lidar calibration,” in Laser Applications to Chemical, Security and Environmental Analysis, Technical Digest (Optical Society of America, 2006), paper TuA4.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

2005 (1)

A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
[CrossRef]

2004 (4)

C. Münkel and J. Räsänen, “New optical concept for commercial lidar ceilometers scanning the boundary layer,” Proc. SPIE 5571, 364–374 (2004).
[CrossRef]

M. Pahlow, V. A. Kovalev, and M. Parlange, “Calibration method for mutiangle lidar measurements,” Appl. Opt. 43, 2948–2956 (2004).
[CrossRef] [PubMed]

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777–778 (2004).
[CrossRef]

C. Currie and S. Valencia, “Evaluation of the micro-pulse LIDAR clibration cnstant,” in Proceeding of 22nd International Laser Radar Conference, G.Pappalardo and A.Amodeo, eds. (European Space Agency, 2004), pp. 279–282.

2002 (5)

J. Zhang, “A lidar calibration method by water cloud,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 625–628.

M. J. Reagan, X. Wang, and M. J. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sens. 40, 2285–2290 (2002).
[CrossRef]

M. Osborn, J. Reagan, and X. Wang, “An operational space-borne lidar calibration algorithm for 1064 nm,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 777–780.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.

2001 (1)

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

2000 (3)

K. N. Liou, Y. Takano, S. C. Ou, and M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000).
[CrossRef]

J. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000).
[CrossRef]

1998 (3)

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

E. W. Eloranta, “A practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

U. Wandinger, “Multiple-scattering influence on extinction and backscatter coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
[CrossRef]

1997 (2)

M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.

J. Zhang and H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997).
[CrossRef] [PubMed]

1989 (2)

J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28, 2194–2195 (1989).
[CrossRef] [PubMed]

1985 (1)

1984 (1)

1983 (1)

R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

1981 (2)

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

C. M. R. Platt, “Remote sounding of high clouds. III. Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

1979 (1)

1976 (1)

K. Kunkel and J. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

Ahmed, S.

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009).
[CrossRef]

Baum, B. A.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Bi, L.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Boers, R.

J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

Bosenberg, J.

J. Bosenberg and R. Hoff, “Plan for the implementation of the GAW aerosol lidar observation network GALION,” Global Atmosphere Watch report 178, World Meteorological Organization/TD 1443, World Meteorological Organization, 2007.

Brock, R. S.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Burton, S. P.

L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008).
[CrossRef]

Campbell, J. R.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

Carswell, A. I.

Chaw, S.

Chýlek, P.

R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Clothiaux, E. E.

N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000).
[CrossRef]

Currie, C.

C. Currie and S. Valencia, “Evaluation of the micro-pulse LIDAR clibration cnstant,” in Proceeding of 22nd International Laser Radar Conference, G.Pappalardo and A.Amodeo, eds. (European Space Agency, 2004), pp. 279–282.

Dubinsky, R. H.

Dubovik, O.

A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
[CrossRef]

Eck, T. F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Eloranta, E. W.

Fernald, F. G.

Flatau, P. J.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

Frouin, R.

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

Gordon, H. R.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

Grandy, W. T.

R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Gross, B.

Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009).
[CrossRef]

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

Ham, C.

R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Hart, W. D.

J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

Hirayama, C.

Hoff, R.

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

J. Bosenberg and R. Hoff, “Plan for the implementation of the GAW aerosol lidar observation network GALION,” Global Atmosphere Watch report 178, World Meteorological Organization/TD 1443, World Meteorological Organization, 2007.

Hogan, R. J.

R. J. Hogan, “Fast approximate calculation of multiply scattered lidar returns,” Appl. Opt. 45, 5984–5992 (2006).
[CrossRef] [PubMed]

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777–778 (2004).
[CrossRef]

Holben, B. N.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Hostetler, C. A.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

Hu, H.

Hu, Y.

M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Y. Hu, “Using water clouds for lidar calibration,” in Laser Applications to Chemical, Security and Environmental Analysis, Technical Digest (Optical Society of America, 2006), paper TuA4.

Hu, Y. X.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Hunt, W. H.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

Illingworth, A. J.

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777–778 (2004).
[CrossRef]

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Jennings, S. G.

R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Johnson, J. E.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

Johnson, M. W.

Kattawar, G. W.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Kaufman, Y. J.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

King, M. D.

M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.

Klett, J. D.

Kovalev, V. A.

Kunkel, K.

K. Kunkel and J. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Lienert, B.

J. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

Liou, K. N.

K. N. Liou, Y. Takano, S. C. Ou, and M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000).
[CrossRef]

M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.

Liu, Z.

M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Z. Tao, M. P. McCormick, D. Wu, Z. Liu, and M. A. Vaughan, “Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar,” Appl. Opt. 47, 1478–1485 (2008).
[CrossRef] [PubMed]

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

Lu, J. Q.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Luo, B. P.

L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008).
[CrossRef]

Lynch, D. K.

D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.

Markowicz, K.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

McCormick, M. P.

McCormick, P.

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

McGill, M.

M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Michimoto, K.

Miles, N. L.

N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000).
[CrossRef]

Miller, M.

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

Moshary, F.

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009).
[CrossRef]

Münkel, C.

C. Münkel and J. Räsänen, “New optical concept for commercial lidar ceilometers scanning the boundary layer,” Proc. SPIE 5571, 364–374 (2004).
[CrossRef]

Nakajima, T.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

O’Connor, E. J.

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777–778 (2004).
[CrossRef]

Obland, M.

M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Omar, A. H.

A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
[CrossRef]

Osborn, M.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

M. Osborn, J. Reagan, and X. Wang, “An operational space-borne lidar calibration algorithm for 1064 nm,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 777–780.

Osborn, M. J.

M. J. Reagan, X. Wang, and M. J. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sens. 40, 2285–2290 (2002).
[CrossRef]

Ou, S. C.

Pahlow, M.

Pal, S. R.

Parlange, M.

Parsiani, H.

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

Peter, T.

L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008).
[CrossRef]

Pinnick, R. G.

R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

Platnick, S. E.

M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.

Platt, C. M. R.

C. M. R. Platt, “Remote sounding of high clouds. III. Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

Porter, J.

J. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

Powell, K. A.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

Quinn, P. K.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

Räsänen, J.

C. Münkel and J. Räsänen, “New optical concept for commercial lidar ceilometers scanning the boundary layer,” Proc. SPIE 5571, 364–374 (2004).
[CrossRef]

Reagan, J.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

M. Osborn, J. Reagan, and X. Wang, “An operational space-borne lidar calibration algorithm for 1064 nm,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 777–780.

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Reagan, M. J.

M. J. Reagan, X. Wang, and M. J. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sens. 40, 2285–2290 (2002).
[CrossRef]

Reynolds, R. M.

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

Russell, P. B.

Sassen, K.

D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Sharma, S. K.

J. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

Slutsker, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Smirnov, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Spinhirne, J. D.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

Starr, D. C.

D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.

Stephens, G.

D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.

Swissler, T. J.

Takano, Y.

Takeuchi, N.

Tanre, D.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Tao, Z.

Thomson, L. W.

L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008).
[CrossRef]

Tomine, K.

Trepte, C.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

Tsay, S.

M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.

Valencia, S.

C. Currie and S. Valencia, “Evaluation of the micro-pulse LIDAR clibration cnstant,” in Proceeding of 22nd International Laser Radar Conference, G.Pappalardo and A.Amodeo, eds. (European Space Agency, 2004), pp. 279–282.

Vaughan, M. A.

M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Z. Tao, M. P. McCormick, D. Wu, Z. Liu, and M. A. Vaughan, “Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar,” Appl. Opt. 47, 1478–1485 (2008).
[CrossRef] [PubMed]

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

Vemte, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Verlinde, J.

N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000).
[CrossRef]

Voss, K. J.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

Wandinger, U.

Wang, M. H.

M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.

Wang, X.

M. J. Reagan, X. Wang, and M. J. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sens. 40, 2285–2290 (2002).
[CrossRef]

M. Osborn, J. Reagan, and X. Wang, “An operational space-borne lidar calibration algorithm for 1064 nm,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 777–780.

Weinman, J.

K. Kunkel and J. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

Welton, E. J.

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

Winker, D.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

Winker, D. M.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
[CrossRef]

Won, J. G.

A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
[CrossRef]

Wu, D.

Wu, Y.

Yang, P.

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Yoon, S. C.

A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
[CrossRef]

Zhang, J.

J. Zhang, “A lidar calibration method by water cloud,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 625–628.

J. Zhang and H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997).
[CrossRef] [PubMed]

Appl. Opt. (13)

P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
[CrossRef] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

J. Zhang and H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997).
[CrossRef] [PubMed]

M. Pahlow, V. A. Kovalev, and M. Parlange, “Calibration method for mutiangle lidar measurements,” Appl. Opt. 43, 2948–2956 (2004).
[CrossRef] [PubMed]

Z. Tao, M. P. McCormick, D. Wu, Z. Liu, and M. A. Vaughan, “Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar,” Appl. Opt. 47, 1478–1485 (2008).
[CrossRef] [PubMed]

Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009).
[CrossRef]

R. H. Dubinsky, A. I. Carswell, and S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985).
[CrossRef] [PubMed]

R. J. Hogan, “Fast approximate calculation of multiply scattered lidar returns,” Appl. Opt. 45, 5984–5992 (2006).
[CrossRef] [PubMed]

E. W. Eloranta, “A practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

U. Wandinger, “Multiple-scattering influence on extinction and backscatter coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
[CrossRef]

K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28, 2194–2195 (1989).
[CrossRef] [PubMed]

K. N. Liou, Y. Takano, S. C. Ou, and M. W. Johnson, “Laser transmission through thin cirrus clouds,” Appl. Opt. 39, 4886–4894 (2000).
[CrossRef]

Atmos. Chem. Phys. (1)

L. W. Thomson, S. P. Burton, B. P. Luo, and T. Peter, “SAGE II measurements of stratospheric aerosol properties at non-volcanic levels,” Atmos. Chem. Phys. 8, 983–995 (2008).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

M. J. Reagan, X. Wang, and M. J. Osborn, “Spaceborne lidar calibration from cirrus and molecular backscatter returns,” IEEE Trans. Geosci. Remote Sens. 40, 2285–2290 (2002).
[CrossRef]

J. Appl. Meteorol. (1)

J. D. Spinhirne, R. Boers, and W. D. Hart, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

J. Porter, B. Lienert, and S. K. Sharma, “Using horizontal and slant lidar measurements to obtain aerosol scattering coefficients from a coastal lidar in Hawaii,” J. Atmos. Ocean. Technol. 17, 1445–1454 (2000).
[CrossRef]

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777–778 (2004).
[CrossRef]

J. Atmos. Sci. (3)

N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000).
[CrossRef]

K. Kunkel and J. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
[CrossRef]

C. M. R. Platt, “Remote sounding of high clouds. III. Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

J. Geophys. Res. (6)

E. J. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars,” J. Geophys. Res. 107, 8019–8038 (2002).
[CrossRef]

K. J. Voss, E. J. Welton, P. K. Quinn, R. Frouin, M. Miller, and R. M. Reynolds, “Aerosol optical depth measurements during the Aerosols99 experiment,” J. Geophys. Res. 106, 20811–20819 (2001).
[CrossRef]

A. H. Omar, J. G. Won, D. M. Winker, S. C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14 (2005).
[CrossRef]

R. G. Pinnick, S. G. Jennings, P. Chýlek, C. Ham, and W. T. Grandy Jr., “Backscatter and extinction in water cloud,” J. Geophys. Res. 88, 6787–6796 (1983).
[CrossRef]

M. A. Vaughan, Z. Liu, M. McGill, Y. Hu, and M. Obland, “On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements,” J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009).
[CrossRef]

Proc. SPIE (1)

C. Münkel and J. Räsänen, “New optical concept for commercial lidar ceilometers scanning the boundary layer,” Proc. SPIE 5571, 364–374 (2004).
[CrossRef]

Remote Sens. Environ. (1)

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemte, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Other (9)

R. Hoff, F. Moshary, S. Ahmed, B. Gross, P. McCormick, and H. Parsiani, CREST Lidar Network (CLN), CREST Publications Series, Vol.  7, NOAA-CREST, 2009.

J. Zhang, “A lidar calibration method by water cloud,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 625–628.

Y. Hu, “Using water clouds for lidar calibration,” in Laser Applications to Chemical, Security and Environmental Analysis, Technical Digest (Optical Society of America, 2006), paper TuA4.

C. A. Hostetler, Z. Liu, J. Reagan, M. A. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP algorithm, theoretical basis document calibration and level 1 data products,” PC-SCI-201, Release 1.0, NASA Langley Research Center, 2006.

M. Osborn, J. Reagan, and X. Wang, “An operational space-borne lidar calibration algorithm for 1064 nm,” in Proceedings of 21st International Laser Radar Conference, L.Bissonette, G.Roy, and G.Vallée, eds. (Defence R&D Canada-Valcartier, 2002), pp. 777–780.

D. K. Lynch, K. Sassen, D. C. Starr, and G. Stephens, Cirrus (Oxford University, 2002), p. 274.

J. Bosenberg and R. Hoff, “Plan for the implementation of the GAW aerosol lidar observation network GALION,” Global Atmosphere Watch report 178, World Meteorological Organization/TD 1443, World Meteorological Organization, 2007.

M. D. King, S. Tsay, S. E. Platnick, M. H. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS algorithm theoretical basis document,” ATBD-MOD-05, MOD06–Cloud product, NASA Goddard Space Flight Center, 1997.

C. Currie and S. Valencia, “Evaluation of the micro-pulse LIDAR clibration cnstant,” in Proceeding of 22nd International Laser Radar Conference, G.Pappalardo and A.Amodeo, eds. (European Space Agency, 2004), pp. 279–282.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Water cloud lidar ratio at 1064 nm as a function of the median volume diameter for gamma droplet size distribution with two different values of the shape parameter μ.

Fig. 2
Fig. 2

Time-height cross section of the range- corrected lidar returns at 1064 nm on June 21, 2006.

Fig. 3
Fig. 3

(a) Lidar-measured return profiles ( 1 min average). (b) Raman-channel derived particle extinction coefficient, and (c) cloud multiple-scattering factor at 15:09 on June 21, 2006.

Fig. 4
Fig. 4

(a) Aerosol optical depth and two-way transmittance under the low cloud at 1064 nm . (b) Average of cloud multiple-scattering factor, and (c) calibration constant from the low-level water cloud on June 21, 2006.

Fig. 5
Fig. 5

(a) Comparison of lidar- and sunphotometer (SP)-derived AOD, and (b) calibration constant estimated from the high cirrus cloud on June 21, 2006.

Fig. 6
Fig. 6

(a) Time-height cross section of the range-corrected lidar returns. (b) Calibration constant from the low-level water cloud. (c) Comparison of lidar- and sunphotometer (SP)-derived AOD, and (d) calibration constant from the high cirrus cloud method on March 3, 2008.

Fig. 7
Fig. 7

(a) Aerosol backscatter coefficients at 532 1064 nm , and (b) Ångström exponents at 1:00 pm on March 3, 2008.

Fig. 8
Fig. 8

Lidar calibration constants with (a) low-altitude water clouds, (b) high cirrus clouds, and (c) aerosol backscatter coefficients at 532 1064 nm at 12:30 pm on July 3, 2008.

Fig. 9
Fig. 9

Lidar calibration constants with (a) low-altitude water clouds, (b) high cirrus clouds, and (c) aerosol backscatter coefficients at 532 1064 nm at 11:00 am on June 16, 2006.

Fig. 10
Fig. 10

Normalized lidar calibration constant in the year of 2008 and 2010.

Fig. 11
Fig. 11

Comparison of aerosol lidar S-ratios during March–April, 2008. (SP-inversion, calculate with sun/sky photometer inversion data; Lidar-AOD, constraint of lidar-integrated backscatter coefficient with sunphotometer [SP]-derived AOD).

Fig. 12
Fig. 12

(a) Aerosol backscatter coefficients derived from the calibration constant method ( β C 1064 ) and Fernald inversion algorithm ( β Fernald ), and (b) their relative errors at 1:00 pm on March 3, 2008. ( β m , molecular backscatter).

Tables (2)

Tables Icon

Table 1 Comparison of Calibration Constant from the Low-Altitude Water Cloud and High Cirrus Cloud Methods (Un-normalized, the full value = C * ( 1 e + 4 ) )

Tables Icon

Table 2 Aerosol Lidar Ratio (S) Values (sr) at 1064 nm

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = C × β ( z ) × T 2 ( z ) / z 2 ,
= C × [ β m ( z ) + β p ( z ) ] × exp [ 2 z o z ( α m ( z ) + α p ( z ) ) d z ] / z 2 ,
1 C z b z t [ P ( z ) z 2 ] d z = T 2 ( z 0 , z b ) z b z t [ β c ( z ) exp ( 2 τ c ( z ) η ( z ) ) ] d z = T 2 ( z 0 , z b ) [ 1 exp ( 2 τ c η ( z ) ) ] / [ 2 S c η ( z ) ] ,
C = ( 2 S c η ) × z b z t [ P ( z ) z 2 ] d z [ 1 exp ( 2 τ c η ) ] × T 2 ( z 0 , z b ) .
Δ C C = ( Δ S c S c ) 2 + ( Δ η η ) 2 + ( Δ T 2 T 2 ) 2 .
C = P ( z ) z 2 R ( z ) β m ( z ) T m 2 ( z ) T a 2 ( z ) ,
P ( 1064 , z c ) P ( 532 , z c ) = C 1064 × [ β c ( 1064 , z c ) + β m ( 1064 , z c ) ] × T 2 m ( 1064 , z 0 , z c ) × T 2 a ( 1064 , z 0 , z b ) × T 2 c ( 1064 , z b , z c ) C 532 × [ β c ( 532 , z c ) + β m ( 532 , z c ) ] × T 2 m ( 532 , z 0 , z c ) × T 2 a ( 532 , z 0 , z b ) × T 2 c ( 532 , z b , z c ) ,
= C 1064 × [ β c ( 1064 , z c ) + β m ( 1064 , z c ) ] C 532 × [ β c ( 532 , z c ) + β m ( 532 , z c ) ] × K m ( z 0 , z c ) × K a ( z 0 , z b ) × K c ( z b , z c ) ,
C 1064 P ( 1064 , z c ) P ( 532 , z c ) × C 532 / K m ( z 0 , z c ) / K a ( z 0 , z b ) .
Δ C 1064 C 1064 = ( Δ C 532 C 532 ) 2 + ( Δ K a K a ) 2 + ( Δ P ( 1064 ) P ( 1064 ) ) 2 + ( Δ P ( 532 ) P ( 532 ) ) 2 .

Metrics