Abstract

In this paper, we develop a robust and effective algorithm for texture segmentation and feature selection. The approach is to incorporate a patch-based subspace learning technique into the subspace Mumford–Shah (SMS) model to make the minimization of the SMS model robust and accurate. The proposed method is fully unsupervised in that it removes the need to specify training data, which is required by existing methods for the same model. We further propose a novel (to our knowledge) pairwise dissimilarity measure for pixels. Its novelty lies in the use of the relevance scores of the features of each pixel to improve its discriminating power. Some superior results are obtained compared to existing unsupervised algorithms, which do not use a subspace approach. This confirms the usefulness of the subspace approach and the proposed unsupervised algorithm.

© 2011 Optical Society of America

Full Article  |  PDF Article
Related Articles
Kernel-based spectral color image segmentation

Hongyu Li, Vladimir Bochko, Timo Jaaskelainen, Jussi Parkkinen, and I-fan Shen
J. Opt. Soc. Am. A 25(11) 2805-2816 (2008)

Semi-Supervised Subspace Learning for Mumford-Shah Model Based Texture Segmentation

Yan Nei Law, Hwee Kuan Lee, and Andy M. Yip
Opt. Express 18(5) 4434-4448 (2010)

Sensitivity evaluation of dynamic speckle activity measurements using clustering methods

Pablo Etchepareborda, Alejandro Federico, and Guillermo H. Kaufmann
Appl. Opt. 49(19) 3753-3761 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription