Abstract

We numerically analyze the optical properties of a two-dimensional (2D) superconducting Bragg reflector (SBR) using the finite element method in conjunction with a two-fluid model. It is found that the wavelength-dependent reflectance spectra of the proposed 2D SBR are strongly dependent on the polarizations of incident light and can be parametrically tuned by the system temperature and the geometric parameters of embedded dielectric rods. Taking advantage of the dispersive superconductor with its zero-refractive index characteristic and the structural periodicity of the proposed superconducting structure, narrow passband filters can be generated near the threshold wavelength. Furthermore, the narrow passband features of the 2D SBR are found to be sustained up to a very large angle of incidence. The extraordinary optical properties imply that the proposed 2D SBR may be applied to the design of an omnidirectional narrowband transmission filter.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
    [CrossRef]
  2. L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry–Pérot filters,” Semicond. Sci. Technol. 12, 570–575(1997).
    [CrossRef]
  3. H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999).
    [CrossRef]
  4. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
    [CrossRef]
  5. K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
    [CrossRef]
  6. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  7. A. Hosseini and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006).
    [CrossRef]
  8. L. Zhou, X. Q. Yu, and Y. Y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
    [CrossRef]
  9. J. J. Xu, H. P. Fang, and Z. F. Lin, “Expanding high reflection range in a dielectric multilayer reflector by disorder and inhomogeneity,” J. Phys. D 34, 445–449 (2001).
    [CrossRef]
  10. C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B 27, 458–463 (2010).
    [CrossRef]
  11. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015–9019 (2010).
    [CrossRef] [PubMed]
  12. L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
    [CrossRef]
  13. A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005).
    [CrossRef] [PubMed]
  14. H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010).
    [CrossRef]
  15. H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
    [CrossRef]
  16. A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
    [CrossRef]
  17. A. Mishra, S. K. Awasthi, S. K. Srivastava, U. Malaviya, and S. P. Ojha, “Tunable and omnidirectional filters based on one-dimensional photonic crystals composed of single-negative materials,” J. Opt. Soc. Am. B 28, 1416–1422 (2011).
    [CrossRef]
  18. Y. Chen, “Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials,” J. Phys. D: Appl. Phys. 42, 075106 (2009).
    [CrossRef]
  19. K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005).
    [CrossRef]

2011

2010

H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010).
[CrossRef]

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B 27, 458–463 (2010).
[CrossRef]

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015–9019 (2010).
[CrossRef] [PubMed]

K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
[CrossRef]

2009

A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[CrossRef]

Y. Chen, “Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials,” J. Phys. D: Appl. Phys. 42, 075106 (2009).
[CrossRef]

2007

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

2006

A. Hosseini and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[CrossRef]

L. Zhou, X. Q. Yu, and Y. Y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

2005

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005).
[CrossRef]

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005).
[CrossRef] [PubMed]

2001

J. J. Xu, H. P. Fang, and Z. F. Lin, “Expanding high reflection range in a dielectric multilayer reflector by disorder and inhomogeneity,” J. Phys. D 34, 445–449 (2001).
[CrossRef]

1999

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999).
[CrossRef]

1997

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry–Pérot filters,” Semicond. Sci. Technol. 12, 570–575(1997).
[CrossRef]

1994

R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
[CrossRef]

Aly, A. H.

A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[CrossRef]

Awasthi, S. K.

Buckingham, R.

Chen, Y.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015–9019 (2010).
[CrossRef] [PubMed]

Y. Chen, “Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials,” J. Phys. D: Appl. Phys. 42, 075106 (2009).
[CrossRef]

Chen, Y. F.

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

Dabrowski, B.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005).
[CrossRef] [PubMed]

de Groot, P.

Doppalapudi, D.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999).
[CrossRef]

Dubos, P.

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry–Pérot filters,” Semicond. Sci. Technol. 12, 570–575(1997).
[CrossRef]

Fang, H. P.

J. J. Xu, H. P. Fang, and Z. F. Lin, “Expanding high reflection range in a dielectric multilayer reflector by disorder and inhomogeneity,” J. Phys. D 34, 445–449 (2001).
[CrossRef]

Fedotov, V. A.

Feng, L.

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

Gaihanou, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
[CrossRef]

Horng, L.

H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010).
[CrossRef]

Hosseini, A.

Houdré, R.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
[CrossRef]

Hsu, H. T.

A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[CrossRef]

Hwangbo, C. K.

A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[CrossRef]

Ilegems, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
[CrossRef]

Iliopoulos, E.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999).
[CrossRef]

Kam, C. H.

Kameda, M.

K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
[CrossRef]

Kawase, T.

K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
[CrossRef]

Kim, D. G.

K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
[CrossRef]

Kim, J. K.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Lee, H. M.

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010).
[CrossRef]

Li, C. L.

K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005).
[CrossRef]

Lin, C. Y.

H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010).
[CrossRef]

Lin, Z. F.

J. J. Xu, H. P. Fang, and Z. F. Lin, “Expanding high reflection range in a dielectric multilayer reflector by disorder and inhomogeneity,” J. Phys. D 34, 445–449 (2001).
[CrossRef]

Liu, X. P.

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

Loidl, A.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005).
[CrossRef] [PubMed]

Malaviya, U.

Massoud, Y.

Mishra, A.

Miyazaki, K. I.

K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
[CrossRef]

Moustakas, T. D.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999).
[CrossRef]

Nakayama, M.

K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
[CrossRef]

Ng, H. M.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999).
[CrossRef]

Oesterle, U.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
[CrossRef]

Ojha, S. P.

Ooi, C. H. R.

Pavesi, L.

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry–Pérot filters,” Semicond. Sci. Technol. 12, 570–575(1997).
[CrossRef]

Pimenov, A.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005).
[CrossRef] [PubMed]

Przyslupski, P.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005).
[CrossRef] [PubMed]

Schubert, E. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Schubert, M. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

She, W. L.

K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005).
[CrossRef]

Shi, J. H.

Srivastava, S. K.

Stanley, R. P.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
[CrossRef]

Tang, Y. F.

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

Tsiatmas, A.

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, S.

Wu, C. J.

A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[CrossRef]

Wu, J. C.

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010).
[CrossRef]

Xi, J. Q.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Xu, J. J.

J. J. Xu, H. P. Fang, and Z. F. Lin, “Expanding high reflection range in a dielectric multilayer reflector by disorder and inhomogeneity,” J. Phys. D 34, 445–449 (2001).
[CrossRef]

Xu, K. Y.

K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005).
[CrossRef]

Yang, T. J.

A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[CrossRef]

Yu, X. Q.

L. Zhou, X. Q. Yu, and Y. Y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Zheludev, N. I.

Zheng, X.

K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005).
[CrossRef]

Zhou, L.

L. Zhou, X. Q. Yu, and Y. Y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Zhu, S. N.

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

Zhu, Y. Y.

L. Zhou, X. Q. Yu, and Y. Y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

Zi, J.

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

Appl. Phys. Lett.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994).
[CrossRef]

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999).
[CrossRef]

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

L. Zhou, X. Q. Yu, and Y. Y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

J. Appl. Phys.

L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005).
[CrossRef]

H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010).
[CrossRef]

H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010).
[CrossRef]

A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

J. J. Xu, H. P. Fang, and Z. F. Lin, “Expanding high reflection range in a dielectric multilayer reflector by disorder and inhomogeneity,” J. Phys. D 34, 445–449 (2001).
[CrossRef]

J. Phys. D: Appl. Phys.

Y. Chen, “Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials,” J. Phys. D: Appl. Phys. 42, 075106 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010).
[CrossRef]

Opt. Express

Phys. Rev. E

K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005).
[CrossRef]

Phys. Rev. Lett.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry–Pérot filters,” Semicond. Sci. Technol. 12, 570–575(1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic drawing of the proposed SBR. The diameter and lattice constant of the dielectric rod are denoted as d and a, respectively. The length of the SBR is set as l = 10 a . The plane waves with TE and TM polarizations are incident with an angle of incidence of θ i . The modeling unit cell is indicated by the dashed box.

Fig. 2
Fig. 2

Reflectance spectra of the SBR with plane waves of TE/TM polarizations at T of 4 K . The diameter and lattice constant of the dielectric rods are set as d = 100 nm and a = 150 nm , respectively.

Fig. 3
Fig. 3

Contour plots of the (a) TE- and (b) TM-polarized wavelength-dependent reflectance spectra of the SBR at different T ranging from 3 to 9 K . The geometric parameters are exactly the same as described in Fig. 2.

Fig. 4
Fig. 4

Contour plots of the (a) TE- and (b) TM-polarized wavelength-dependent reflectance spectra of the SBR at different d ranging from 30 nm to 140 nm with T fixed at 4 K .

Fig. 5
Fig. 5

TM-polarized wavelength-dependent reflectance spectra of the SBR at different θ i from 0 ° to 75 ° . The diameter and lattice constant of the dielectric rods are set as d = 130 nm and a = 150 nm , respectively, whereas T is fixed at 4 K .

Fig. 6
Fig. 6

Sharp dips extracted from Fig. 5 at θ i from 0 ° to 75 ° in the vicinity of the threshold wavelength of 535 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε SC = 1 c 2 [ 1 ( T / T c ) 4 ] ω 2 λ 0 2 ,
n SC = 1 c 2 [ 1 ( T / T c ) 4 ] ω 2 λ 0 2 ,
λ th = 2 π λ 0 1 ( T / T c ) 4 .

Metrics