Abstract

We describe a new concept of an electro-optical sensor with the capability of simultaneous spatial and spectral filtering. It is based on a spatial light modulator, and in combination with the technique of wavelength multiplexing, it enables one to manipulate the spectral content of an indicated spot within the field of view of the sensor. This new concept allows the attenuation of monochromatic light of undetermined wavelengths in particular and is of worth for imaging vision systems to suppress unwanted detector overexposure.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Slusher, “Laser technology,” Rev. Mod. Phys. 71, S471–S479 (1999).
    [CrossRef]
  2. M. Gonzalez Jr., “May the force, and safety goggles, be with you,” http://blogs.wsj.com/digits/2010/06/17/may-the-force-and-safety-goggles-be-with-you/.
  3. V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).
  4. S. Svensson, S. Björkert, H. Kariis, and C. Lopes, “Countering laser pointer threats to road safety,” Proc. SPIE 6402, 640207(2006).
    [CrossRef]
  5. R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
    [CrossRef]
  6. A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
    [CrossRef]
  7. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  8. Y.-P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
    [CrossRef]
  9. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
    [CrossRef]
  10. G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U(2009).
    [CrossRef]
  11. A. Donval, T. Fisher, G. Blecher, and M. Oron, “Dynamic sunlight filter (DSF): a passive way to increase the dynamic range in visible and SWIR cameras,” Proc. SPIE 7660, 766024(2010).
    [CrossRef]
  12. M. G. Tomilin and V. V. Danilov, “Optical devices based on liquid crystals for protecting an observer from blinding light sources,” J. Opt. Technol. 71, 75–83 (2004).
    [CrossRef]
  13. J. L. Smith, “Selective glare reduction ocular for scenery with very bright objects,” U.S. patent 5,797,050 (18 August 1998).
  14. Deutsche Telekom AG, “Device for the local attenuation of the light intensity in the field of vision of a light-sensitive monitoring device,” U.S. patent 6,636,278 (21 October 2003).
  15. C. J. Koester, “Wavelength multiplexing in fiber optics,” J. Opt. Soc. Am. 58, 63–67 (1968).
    [CrossRef]
  16. G. C. Holst, Testing and Evaluation of Infrared Imaging Systems, 3rd ed. (SPIE, 2008).
  17. S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991).
    [CrossRef]
  18. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).
  19. R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).
    [CrossRef]

2010 (1)

A. Donval, T. Fisher, G. Blecher, and M. Oron, “Dynamic sunlight filter (DSF): a passive way to increase the dynamic range in visible and SWIR cameras,” Proc. SPIE 7660, 766024(2010).
[CrossRef]

2009 (1)

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U(2009).
[CrossRef]

2008 (1)

G. C. Holst, Testing and Evaluation of Infrared Imaging Systems, 3rd ed. (SPIE, 2008).

2007 (2)

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

2006 (1)

S. Svensson, S. Björkert, H. Kariis, and C. Lopes, “Countering laser pointer threats to road safety,” Proc. SPIE 6402, 640207(2006).
[CrossRef]

2004 (2)

V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).

M. G. Tomilin and V. V. Danilov, “Optical devices based on liquid crystals for protecting an observer from blinding light sources,” J. Opt. Technol. 71, 75–83 (2004).
[CrossRef]

2001 (1)

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).

2000 (2)

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).
[CrossRef]

Y.-P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

1999 (2)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

R. E. Slusher, “Laser technology,” Rev. Mod. Phys. 71, S471–S479 (1999).
[CrossRef]

1993 (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

1991 (1)

S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991).
[CrossRef]

1968 (1)

Bekman, H.

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

Björkert, S.

S. Svensson, S. Björkert, H. Kariis, and C. Lopes, “Countering laser pointer threats to road safety,” Proc. SPIE 6402, 640207(2006).
[CrossRef]

Blecher, G.

A. Donval, T. Fisher, G. Blecher, and M. Oron, “Dynamic sunlight filter (DSF): a passive way to increase the dynamic range in visible and SWIR cameras,” Proc. SPIE 7660, 766024(2010).
[CrossRef]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Bourdon, P.

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Bürsing, H.

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Connor, C. W.

V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).

Danilov, V. V.

Dellinger, J.

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Dengler, S.

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U(2009).
[CrossRef]

Dillard, A. E.

V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).

Dimmeler, A.

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

Donval, A.

A. Donval, T. Fisher, G. Blecher, and M. Oron, “Dynamic sunlight filter (DSF): a passive way to increase the dynamic range in visible and SWIR cameras,” Proc. SPIE 7660, 766024(2010).
[CrossRef]

Driggers, R. G.

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).
[CrossRef]

Duchateau, N.

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Durécu, A.

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Eberle, B.

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U(2009).
[CrossRef]

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Fisher, T.

A. Donval, T. Fisher, G. Blecher, and M. Oron, “Dynamic sunlight filter (DSF): a passive way to increase the dynamic range in visible and SWIR cameras,” Proc. SPIE 7660, 766024(2010).
[CrossRef]

Gonzalez, M.

M. Gonzalez Jr., “May the force, and safety goggles, be with you,” http://blogs.wsj.com/digits/2010/06/17/may-the-force-and-safety-goggles-be-with-you/.

Henbest, K. B.

Y.-P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

Hollins, R. C.

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

Holst, G. C.

G. C. Holst, Testing and Evaluation of Infrared Imaging Systems, 3rd ed. (SPIE, 2008).

Kariis, H.

S. Svensson, S. Björkert, H. Kariis, and C. Lopes, “Countering laser pointer threats to road safety,” Proc. SPIE 6402, 640207(2006).
[CrossRef]

Koester, C. J.

Lopes, C.

S. Svensson, S. Björkert, H. Kariis, and C. Lopes, “Countering laser pointer threats to road safety,” Proc. SPIE 6402, 640207(2006).
[CrossRef]

Martin, R. B.

Y.-P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

McLin, L. N.

V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).

Mellier, B.

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

Mieremet, A. L.

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

Montgomery, R. W.

V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).

Murphy, D. B.

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).

Nakagawara, V. B.

V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).

Narayanswamy, R.

S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991).
[CrossRef]

Oron, M.

A. Donval, T. Fisher, G. Blecher, and M. Oron, “Dynamic sunlight filter (DSF): a passive way to increase the dynamic range in visible and SWIR cameras,” Proc. SPIE 7660, 766024(2010).
[CrossRef]

Park, S. K.

S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991).
[CrossRef]

Reichenbach, S. E.

S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991).
[CrossRef]

Riggs, J. E.

Y.-P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

Ritt, G.

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U(2009).
[CrossRef]

Schleijpen, R. (H.) M. A.

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

Slusher, R. E.

R. E. Slusher, “Laser technology,” Rev. Mod. Phys. 71, S471–S479 (1999).
[CrossRef]

Smith, J. L.

J. L. Smith, “Selective glare reduction ocular for scenery with very bright objects,” U.S. patent 5,797,050 (18 August 1998).

Sun, Y.-P.

Y.-P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

Svensson, S.

S. Svensson, S. Björkert, H. Kariis, and C. Lopes, “Countering laser pointer threats to road safety,” Proc. SPIE 6402, 640207(2006).
[CrossRef]

Tomilin, M. G.

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

van den Heuvel, J. C.

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

Vasseur, O.

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Vollmerhausen, R. H.

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

Y.-P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Technol. (1)

Opt. Eng. (1)

S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. 30, 170–177 (1991).
[CrossRef]

Proc. SPIE (5)

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U(2009).
[CrossRef]

A. Donval, T. Fisher, G. Blecher, and M. Oron, “Dynamic sunlight filter (DSF): a passive way to increase the dynamic range in visible and SWIR cameras,” Proc. SPIE 7660, 766024(2010).
[CrossRef]

S. Svensson, S. Björkert, H. Kariis, and C. Lopes, “Countering laser pointer threats to road safety,” Proc. SPIE 6402, 640207(2006).
[CrossRef]

R. (H.) M. A. Schleijpen, A. Dimmeler, B. Eberle, J. C. van den Heuvel, A. L. Mieremet, H. Bekman, and B. Mellier, “Laser dazzling of focal plane array cameras,” Proc. SPIE 6738, 67380O (2007).
[CrossRef]

A. Durécu, O. Vasseur, P. Bourdon, B. Eberle, H. Bürsing, J. Dellinger, and N. Duchateau, “Assessment of laser-dazzling effects on TV cameras by means of pattern recognition algorithms,” Proc. SPIE 6738, 67380J (2007).
[CrossRef]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Rev. Mod. Phys. (1)

R. E. Slusher, “Laser technology,” Rev. Mod. Phys. 71, S471–S479 (1999).
[CrossRef]

Other (7)

M. Gonzalez Jr., “May the force, and safety goggles, be with you,” http://blogs.wsj.com/digits/2010/06/17/may-the-force-and-safety-goggles-be-with-you/.

V. B. Nakagawara, R. W. Montgomery, A. E. Dillard, L. N. McLin, and C. W. Connor, “The effects of laser illumination on operational and visual performance of pilots during final approach” (Office of Aerospace Medicine, Federal Aviation Administration, 2004).

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2001).

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).
[CrossRef]

J. L. Smith, “Selective glare reduction ocular for scenery with very bright objects,” U.S. patent 5,797,050 (18 August 1998).

Deutsche Telekom AG, “Device for the local attenuation of the light intensity in the field of vision of a light-sensitive monitoring device,” U.S. patent 6,636,278 (21 October 2003).

G. C. Holst, Testing and Evaluation of Infrared Imaging Systems, 3rd ed. (SPIE, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sensor concept including a spatial light modulator. An SLM is located in the intermediate focal plane of an optical system (lenses L1, L2). By means of two polarizers (polarizer P, analyzer A), the spatial light modulator is used as an intensity modulator. (a) In the passive operating mode the transmittance of the optical arrangement is high, and the light can reach the sensor nearly undisturbed; (b) in the case where the sensor gets dazzled (shown here by the black dashed light rays), a number of pixels of the SLM corresponding to the dazzled pixels of the sensor have to be activated to reduce the transmission of the dazzling light.

Fig. 2
Fig. 2

Intensity modulation of the spatial light modulator Holoeye LC2002 at the wavelength 633 nm . The minimum transmittance is 2 × 10 4 .

Fig. 3
Fig. 3

View of an urban scene with an optical system as presented in Fig. 1. The zoom lens was adjusted to 50 mm , and the exposure time of the camera was 50 ms . Because of the SLM placed in the intermediate focal plane, a meshlike structure is visible. (a) View without a dazzling laser source; (b) a dazzle laser originating from the steeple can be seen; (c) the dazzling laser radiation is attenuated nearly completely by activating the SLM. A limited area of the field of view is affected and hides useful information.

Fig. 4
Fig. 4

Advanced sensor concept using wavelength multiplexing by means of two direct vision prisms (Pr1/Pr2, direct vision prisms; L1/L2, lenses; SLM, spatial light modulator; P/A, polarizers). Because of the spectral dispersion, the local activation of the spatial light modulator attenuates only a narrow spectral band of the incident light beam (blue dashed lines), whereas the remaining wavelengths can pass the optical arrangement unaffected. This allows for spatial and spectral filtering of monochromatic light sources without losing useful information.

Fig. 5
Fig. 5

Illustration of the spectral breakdown of incoming light by a direct vision prism. To simplify matters, the exact optical paths of the dispersed light beams are not shown. For each incident light beam a spectrum is produced in the intermediate focal plane. The spatial position of the spectrum depends on the angle of incidence of the light beam. At a certain position in the intermediate focal plane all wavelengths can occur, though they belong to light beams with different angles of incidence.

Fig. 6
Fig. 6

View of an urban scene with an optical system with wavelength multiplexing as presented in Fig. 4. The zoom lens was adjusted to 50 mm , and the exposure time was 50 ms . Compared to Fig. 3, the square-pattern structure of the SLM has vanished. Scene (a) without and (b) with the dazzling laser source; (c) the dazzling laser radiation is attenuated nearly completely by activating the SLM. Only a marginal area of the field of view is still affected. Compared to Fig. 3c, all the geometrical details of the scene are now visible.

Fig. 7
Fig. 7

Optical setup with gratings used for the implementation of the wavelength multiplexing (G1/G2, gratings; L1/L2, lenses; SLM, spatial light modulator; P/A, polarizers). Since the diffraction orders occur at specific diffraction angles, a folded optical path results.

Fig. 8
Fig. 8

Images of an USAF 1951 target taken with various optical setups: (a) optical setup without filtering component (camera with objective lens), (b) optical setup with the SLM according to Fig. 1, (c) optical setup with direct vision prisms used for the wavelength multiplexing according to Fig. 4, (d) optical setup with transmission gratings used for the wavelength multiplexing according to Fig. 7.

Fig. 9
Fig. 9

MTFs for several optical setups: (1) the camera equipped with an objective lens alone, (2) the MTF for the optical setup with SLM, and the MTFs for the optical setups with wavelength multiplexing with (3) direct vision prisms and (4) gratings. The vertical gray line indicates the Nyquist frequency.

Metrics